PARTNER
검증된 파트너 제휴사 자료

통계기반 트랙터 연료 소비량 예측 머신러닝 모델 (Statics-based Tractor Fuel Consumption Prediction Machine Learning Model)

10 페이지
기타파일
최초등록일 2025.04.18 최종저작일 2023.02
10P 미리보기
통계기반 트랙터 연료 소비량 예측 머신러닝 모델
  • 미리보기

    서지정보

    · 발행기관 : 경상국립대학교 농업생명과학연구원
    · 수록지 정보 : 농업생명과학연구 / 57권 / 1호 / 133 ~ 142페이지
    · 저자명 : 이호민, 최영우, 김나은, 이건호, 김현태

    초록

    본 연구의 주요 목적은 회귀기반의 다양한 머신러닝 알고리즘을 개발하고 다양한 농업 분야에서 사용되는 트랙터의 연료 소비량을 예측하는것이다. 비포장 도로주행 농업 기계중에서도 사용 비중이 가장 높은 트랙터를 선정하였다. 실제 농가에 방문하여 현업 전문가 조언을 바탕으로연구하여 설문지를 작성하였으며, 설문 대상은 경남 사천시에 있는 농가 10곳, 진주시에 있는 농가 62곳 등, 총 72곳의 농가이다. 농작업으로는벼농사, 보리농사, 밭농사 등이 있으며, 작업내용으로는 쟁기, 로터리, 비료살포, 베토, 모내기작업 등이 있다. 다중 회귀분석을 통해 연료 소비량예측에 영향을 미치는 변수(마력, 기계사용연수, 경작면적, 작업 시간)를 추출하였고. 머신러닝 회귀 학습기 모형으로 학습하여 예측 모형의 성능을검증하였다. 연료 소비량을 예측하는 모델의 성능은 결정 계수(R), RMSE (제곱 평균 제곱근 오차), MSE (평균 제곱 오차) 및 MAE (평균절대 오차)를 포함한 4가지 통계적 품질 매개변수를 사용하여 결정되었다. 연구 결과 4가지 모델(다중회귀, 랜덤포레스트, 아다부스트, K-최근접이웃) 중 K-최근접 이웃의 성능이 제일 높은 것으로 나타났다. 결론적으로 본 연구의 결과는 실제 농가의 연료 소비량을 예측하여 면세유 유통의투명성을 확보하고 추후 개발 모델의 의사결정에 활용될 수 있을 것으로 기대된다.

    영어초록

    The main objective of this study is to develop various machine learning algorithms based on regression analysis and to predict thefuel consumption rate of tractors used in different agricultural fields. For this purpose, a questionnaire survey was conducted in 72different agricultural farms in Gyeongsangnam-do, which included 10 in Sacheon-si and 62 in Jinju-si. The tractors were utilized mainlyin Rice, Barley, and others crop farming for major agricultural activities such as plowing, rotary tillage, fertilizer application, mowing,and rice transplanting. Four models such as Multiple Linear Regression, Random Forest, Adaboost, and K- Nearest Neighbors havebeen developed to predict the fuel consumption rate of tractors using horsepower, age of machine use, cultivated area, and workinghours as input variables. The performance of those models in predicting fuel consumption rate was determined using four statisticalquality parameters, including coefficient of determination, root mean square error, mean square error, and mean absolute error. The resultsof the study showed that among the four models, K- Nearest Neighbors-based machine-learning model showed best performance. Inconclusion, the results of this study can be used to reduce fuel waste/loss by predicting actual fuel consumption in real farms.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“농업생명과학연구”의 다른 논문도 확인해 보세요!

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 05일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:08 오전