• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

단어 임베딩 및 벡터 유사도 기반 게임 리뷰 자동 분류 시스템 개발 (Development of An Automatic Classification System for Game Reviews Based on Word Embedding and Vector Similarity)

14 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2019.05
14P 미리보기
단어 임베딩 및 벡터 유사도 기반 게임 리뷰 자동 분류 시스템 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국전자거래학회
    · 수록지 정보 : 한국전자거래학회지 / 24권 / 2호 / 1 ~ 14페이지
    · 저자명 : 양유정, 이보현, 김진실, 이기용

    초록

    게임은 소프트웨어 특성상 출시 후 사용자들의 반응을 빠르게 파악하여 개선하는 것이 중요하다. 하지만 구글 플레이 앱 스토어 등 사용자들이 게임을 다운로드하고 리뷰를 올릴 수 있는 대부분의 사이트들은 게임 리뷰에 대한 매우 제한적이고 모호한 분류 기능만을 제공 한다. 따라서 본 논문에서는 사용자들이 사이트에 올린 게임 리뷰를 보다 명확하고 운영에 유용한 주제들로 자동 분류하는 시스템을 개발한다. 본 논문에서 개발한 시스템은 리뷰에 포함된 단어들을 대표적인 단어 임베딩 모델인 word2vec을 사용하여 벡터들로 변환하고, 이 벡터들과 각 주제 간 유사도를 측정하여 해당 리뷰를 관련된 주제로 분류한다. 특히 분류 성능에 직접적인 영향을 미치는 벡터 간 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 벡터 간 유사도 측정 방법인 유클리디안 유사도, 코사인 유사도, 확장된 자카드 유사도의 성능을 실제 데이터를 사용하여 비교하였다. 또한 어떤 리뷰가 둘 이상의 주제에 해당하는 경우를 위해 임계값에 기반한 다중 분류 방법을 사용하였다. 구글 플레이 앱스토어의 실제 데이터를 사용한 실험 결과 본 시스템은 95%까지의 정확도를 보임을 확인하였다.

    영어초록

    Because of the characteristics of game software, it is important to quickly identify and reflect users’ needs into game software after its launch. However, most sites such as the Google Play Store, where users can download games and post reviews, provide only very limited and ambiguous classification categories for game reviews. Therefore, in this paper, we develop an automatic classification system for game reviews that categorizes reviews into categories that are clearer and more useful for game providers. The developed system converts words in reviews into vectors using word2vec, which is a representative word embedding model, and classifies reviews into the most relevant categories by measuring the similarity between those vectors and each category. Especially, in order to choose the best similarity measure that directly affects the classification performance of the system, we have compared the performance of three representative similarity measures, the Euclidean similarity, cosine similarity, and the extended Jaccard similarity, in a real environment. Furthermore, to allow a review to be classified into multiple categories, weuse a threshold-based multi-category classification method. Through experiments on real reviews collected from Google Play Store, we have confirmed that the system achieved up to 95% accuracy.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국전자거래학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 27일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:35 오후