• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

영상 인식을 위한 딥러닝 모델의 적대적 공격에 대한 백색 잡음 효과에 관한 연구 (Study on the White Noise effect Against Adversarial Attack for Deep Learning Model for Image Recognition)

9 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2022.02
9P 미리보기
영상 인식을 위한 딥러닝 모델의 적대적 공격에 대한 백색 잡음 효과에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국정보전자통신기술학회
    · 수록지 정보 : 한국정보전자통신기술학회 논문지 / 15권 / 1호 / 27 ~ 35페이지
    · 저자명 : 이영석, 김종원

    초록

    본 논문에서는 영상 데이터에 대한 적대적 공격으로부터 생성된 적대적 예제로 인하여 발생할 수 있는 딥러닝 시스템의 오분류를 방어하기 위한 방법으로 분류기의 입력 영상에 백색 잡음을 가산하는 방법을 제안하였다. 제안된 방법은 적대적이든 적대적이지 않던 구분하지 않고 분류기의 입력 영상에 백색 잡음을 더하여 적대적 예제가 분류기에서 올바른 출력을 발생할 수 있도록 유도하는 것이다. 제안한 방법은 FGSM 공격, BIM 공격 및 CW 공격으로 생성된 적대적 예제에 대하여 서로 다른 레이어 수를 갖는 Resnet 모델에 적용하고 결과를 고찰하였다. 백색 잡음의 가산된 데이터의 경우 모든 Resnet 모델에서 인식률이 향상되었음을 관찰할 수 있다. 제안된 방법은 단순히 백색 잡음을 경험적인 방법으로 가산하고 결과를 관찰하였으나 에 대한 엄밀한 분석이 추가되는 경우 기존의 적대적 훈련 방법과 같이 비용과 시간이 많이 소요되는 적대적 공격에 대한 방어 기술을 제공할 수 있을 것으로 사료된다.

    영어초록

    In this paper we propose white noise adding method to prevent missclassification of deep learning system by adversarial attacks. The proposed method is that adding white noise to input image that is benign or adversarial example. The experimental results are showing that the proposed method is robustness to 3 adversarial attacks such as FGSM attack, BIN attack and CW attack. The recognition accuracies of Resnet model with 18, 34, 50 and 101 layers are enhanced when white noise is added to test data set while it does not affect to classification of benign test dataset. The proposed model is applicable to defense to adversarial attacks and replace to time- consuming and high expensive defense method against adversarial attacks such as adversarial training method and deep learning replacing method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국정보전자통신기술학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 27일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:38 오전