• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

데이터 증강 및 앙상블 기법을 이용한 딥러닝 기반 GPR 공동 탐지 모델 성능 향상 연구 (Improving the Performance of Deep-Learning-Based Ground-Penetrating Radar Cavity Detection Model using Data Augmentation and Ensemble Techniques)

18 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2023.11
18P 미리보기
데이터 증강 및 앙상블 기법을 이용한 딥러닝 기반 GPR 공동 탐지 모델 성능 향상 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국지구물리.물리탐사학회
    · 수록지 정보 : 지구물리와 물리탐사 / 26권 / 4호 / 211 ~ 228페이지
    · 저자명 : 최용욱, 서상진, 장한길로, 윤대웅

    초록

    방조제의 모니터링에는 지구물리학적 비파괴 검사인 GPR (Ground Penetrating Radar) 탐사가 주로 이용된다. GPR 반응은 상황에 따라 복잡한 양상을 보이므로 자료의 처리와 해석은 전문가의 주관적 판단에 의존하며, 이는 오 탐지의 가능성을 불러옴과 동시에 시간이 오래걸린다는 단점이 있다. 따라서 딥 러닝을 이용하여 GPR 탐사자료의 공동을 탐지하는 다양한 연구들이 수행되고 있다. 딥 러닝 기반 방법은 데이터 기반 방법으로써 풍부한 자료가 필요하나 GPR 탐사의 경우 비용 등의 이유로 학습에 이용할 현장 자료가 부족하다. 따라서 본논문에서는 데이터 증강 전략을 이용하여 딥 러닝 기반 방조제 GPR 탐사자료 공동 탐지 모델을 개발하였다. 다년간 동일한 방조제에서탐사 자료를 사용하여 데이터 세트를 구축하였으며, 컴퓨터 비전 분야의 객체 탐지 모델 중 YOLO (You Look Only Once) 모델을 이용하였다. 데이터 증강 전략을 비교 및 분석함으로써 최적의 데이터 증강 전략을 도출하였고, 초기 모델 개발 후 앵커 박스 클러스터링, 전이학습, 자체 앙상블, 모델 앙상블 기법을 단계적으로 적용하여 최종 모델 도출 후 성능을 평가하였다.

    영어초록

    Ground-penetrating radar (GPR) surveys are commonly used to monitor embankments, which is a nondestructive geophysical method.
    The results of GPR surveys can be complex, depending on the situation, and data processing and interpretation are subject to expert experiences, potentially resulting in false detection. Additionally, this process is time-intensive. Consequently, various studies have been undertaken to detect cavities in GPR survey data using deep learning methods. Deep-learning-based approaches require abundant data for training, but GPR field survey data are often scarce due to cost and other factors constaining field studies. Therefore, in this study, a deep- learning-based model was developed for embankment GPR survey cavity detection using data augmentation strategies. A dataset was constructed by collecting survey data over several years from the same embankment. A you look only once (YOLO) model, commonly used in computer vision for object detection, was employed for this purpose. By comparing and analyzing various strategies, the optimal data augmentation approach was determined. After initial model development, a stepwise process was employed, including box clustering, transfer learning, self-ensemble, and model ensemble techniques, to enhance the final model performance. The model performance was evaluated, with the results demonstrating its effectiveness in detecting cavities in embankment GPR survey data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지구물리와 물리탐사”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 29일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:40 오전