• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝 모델 기반의 자동차 배출가스 관련 대기환경 이상 데이터 탐지 연구 (A Study on Detecting Abnormal Air Quality Data Related to Vehicle Emissions Using a Deep Learning Model)

13 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2024.10
13P 미리보기
딥러닝 모델 기반의 자동차 배출가스 관련 대기환경 이상 데이터 탐지 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국ITS학회
    · 수록지 정보 : 한국ITS학회 논문지 / 23권 / 5호 / 261 ~ 273페이지
    · 저자명 : 최정무, 권장우, 이준표, 이선우, 박정민, 신혜정, 안찬중, 강소영

    초록

    자동차는 주요 대기 오염원 중 하나로 작용하고 있으며 자동차가 주 오염원인 대기오염물질 데이터의 분석을 통해 전기자동차, 교통량 등과 실제 대기오염의 상관관계를 분석할 수 있으며, 이러한 분석을 위해선 대기오염물질 데이터의 신뢰성 확보가 중요하다. 본 논문은 딥러닝 모델과 동적 시간 와핑, 변화점 탐지 등의 알고리즘을 복합적으로 이용하여 전국 각지의대기오염물질 측정소에서 측정되는 데이터 중 ‘베이스라인 이상’ 증상이 나타나는 구간을 탐지하는 방법을 제시한다. 기존 연구들은 이전에 없던 패턴이 나타나는 데이터를 탐지하여 이상으로 정의하지만 이는 베이스라인 이상 탐지에는 적합하지 않았다. 본 논문에서는 주로 이미지 분할(Segmentation)에 사용되는 Unet모델을 시계열 데이터에 적합하도록 변형하여 사용하고 있으며 또한 동적 시간 와핑과 변화점 탐지 알고리즘을 적용하여 주변 측정소와 적절한 비교를 진행하고 이를 통해 오탐지를 최소화하였다.

    영어초록

    Automobiles are one of the major sources of air pollution, and analyzing data on air pollutants, where vehicles are the primary pollutants, can help elucidate the correlation between factors like electric vehicles, traffic volume, and actual air pollution. Ensuring the reliability of air pollutant data is crucial for such analyses. This paper proposes a method for detecting sections of data exhibiting ‘baseline anomalies’ measured at air pollutant monitoring stations across the country by combining deep learning models with algorithms such as dynamic time warping and change point detection. While previous studies have focused on detecting data with unprecedented patterns and defined them as anomalies, this approach was not suitable for detecting baseline anomalies. In this study, we modify the U-Net model, typically used for image segmentation, to be more suitable for time-series data and apply dynamic time warping and change point detection algorithms to compare with nearby monitoring stations, thereby minimizing false detections.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국ITS학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 08일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:03 오전