• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

딥러닝을 활용한 철도 터널 객체 분할에 학습 데이터가 미치는 영향 (Effect of Learning Data on the Semantic Segmentation of Railroad Tunnel Using Deep Learning)

12 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2021.11
12P 미리보기
딥러닝을 활용한 철도 터널 객체 분할에 학습 데이터가 미치는 영향
  • 미리보기

    서지정보

    · 발행기관 : 한국지반공학회
    · 수록지 정보 : 한국지반공학회논문집 / 37권 / 11호 / 107 ~ 118페이지
    · 저자명 : 유영무, 김병규, 박정준

    초록

    Scan-to-BIM은 라이다(Light Detection And Ranging, LiDAR)로 구조물을 계측하고 이를 바탕으로 3D BIM(Building Information Modeling) 모델을 구축하는 방법으로 정밀한 모델링이 가능하지만 많은 인력과 시간, 비용이 소모된다는 한계를 가진다. 이러한 한계를 극복하기 위해 포인트 클라우드 데이터를 대상으로 딥러닝(Deep learning) 알고리즘을 적용하여 구조물의 객체 분할(Semantic segmentation)을 수행하는 연구들이 진행되고 있으나 학습 데이터에 따라 객체 분할 정확도가 어떻게 변화하는지에 대한 연구는 미흡한 실정이다. 본 연구에서는 딥러닝을 통한 철도 터널의 객체 분할에 학습 데이터를 구성하는 철도 터널의 크기, 선로 유형 등이 어떤 영향을 미치는지 확인하기 위해 매개변수 연구를 수행하였다. 매개변수 연구 결과, 학습과 테스트에 사용한 터널의 크기가 비슷할수록, 단선 터널보다는 복선 터널로 학습하는 경우에 더 높은 객체 분할 성능을 보였다. 또한, 학습 데이터를 두 가지 이상의 터널로 구성하면 전체 정확도(Overall Accuracy, OA)와 MIoU(Mean Intersection over Union)가 적게는 10%에서 많게는 50%가량 증가하였는데 이로부터 학습 데이터를 다양하게 구성하는 것이 효율적인 학습에 기여할 수 있음을 확인하였다.

    영어초록

    Scan-to-BIM can be precisely modeled by measuring structures with Light Detection And Ranging (LiDAR) and building a 3D BIM (Building Information Modeling) model based on it, but has a limitation in that it consumes a lot of manpower, time, and cost. To overcome these limitations, studies are being conducted to perform semantic segmentation of 3D point cloud data applying deep learning algorithms, but studies on how segmentation result changes depending on learning data are insufficient. In this study, a parametric study was conducted to determine how the size and track type of railroad tunnels constituting learning data affect the semantic segmentation of railroad tunnels through deep learning. As a result of the parametric study, the similar size of the tunnels used for learning and testing, the higher segmentation accuracy, and the better results when learning through a double-track tunnel than a single-line tunnel. In addition, when the training data is composed of two or more tunnels, overall accuracy (OA) and mean intersection over union (MIoU) increased by 10% to 50%, it has been confirmed that various configurations of learning data can contribute to efficient learning.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지반공학회논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 01일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
7:07 오후