• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

영상 폐색영역 검출 및 해결을 위한 딥러닝 알고리즘 적용 가능성 연구 (A Study on the Applicability of Deep Learning Algorithm for Detection and Resolving of Occlusion Area)

8 페이지
기타파일
최초등록일 2025.04.17 최종저작일 2019.11
8P 미리보기
영상 폐색영역 검출 및 해결을 위한 딥러닝 알고리즘 적용 가능성 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국산학기술학회
    · 수록지 정보 : 한국산학기술학회논문지 / 20권 / 11호 / 305 ~ 312페이지
    · 저자명 : 배경호, 박홍기

    초록

    최근 드론을 이용한 공간정보 구축이 활성화되면서 공간정보 산업발전에 많은 기여를 하고 있다. 하지만 드론 공간정보는 카메라의 중심투영에 의한 발생하는 폐색영역 뿐 아니라 가로수, 보행자, 현수막과 같은 적치물에 의한 폐색영역이 필연적으로 발생한다. 이러한 폐색영역을 효율적으로 해결하기 위한 다양한 방안이 연구되고 있다. 본 연구에서는 폐색영역 해결을 위해 원초적인 재촬영이 아닌 딥러닝 알고리즘을 적용하기 위한 다양한 알고리즘별 조사 및 비교 연구를 수행하였다. 그 결과, 객체 검출 알고리즘인 HOG부터 기계학습 방법인 SVM, 딥러닝 방식인 DNN, CNN, RNN까지 다양한 모델들이 개발 및 적용되고 있으며, 이 중 영상의 분류, 검출에 가장 보편적이고 효율적인 알고리즘은 CNN 기법임을 확인하였다. 향후 AI 기반의 자동 객체 탐지와 분류는 공간정보 분야에서 각광받는 최신 과학기술이다. 이를 위해 다양한 알고리즘에 대한 검토와 적용은 중요하다. 따라서, 본 연구에서 제시하는 알고리즘별 적용 가능성은 자동으로 드론 영상의 폐색영역을 탐지하고 해결할 수 있어 공간정보 구축의 시간, 비용, 인력에 대한 효율성 향상에 기여할 것으로 판단된다.

    영어초록

    Recently, spatial information is being constructed actively based on the images obtained by drones. Because occlusion areas occur due to buildings as well as many obstacles, such as trees, pedestrians, and banners in the urban areas, an efficient way to resolve the problem is necessary. Instead of the traditional way, which replaces the occlusion area with other images obtained at different positions, various models based on deep learning were examined and compared. A comparison of a type of feature descriptor, HOG, to the machine learning-based SVM, deep learning-based DNN, CNN, and RNN showed that the CNN is used broadly to detect and classify objects. Until now, many studies have focused on the development and application of models so that it is impossible to select an optimal model. On the other hand, the upgrade of a deep learning-based detection and classification technique is expected because many researchers have attempted to upgrade the accuracy of the model as well as reduce the computation time. In that case, the procedures for generating spatial information will be changed to detect the occlusion area and replace it with simulated images automatically, and the efficiency of time, cost, and workforce will also be improved.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산학기술학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 16일 금요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:11 오후