PARTNER
검증된 파트너 제휴사 자료

지능형 교통 체계를 위한 딥러닝 기반 객체 검출 활용 방법론 (Deep Learning based Object Detection Method and its Application for Intelligent Transport Systems)

7 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2021.12
7P 미리보기
지능형 교통 체계를 위한 딥러닝 기반 객체 검출 활용 방법론
  • 미리보기

    서지정보

    · 발행기관 : 제어·로봇·시스템학회
    · 수록지 정보 : 제어.로봇.시스템학회 논문지 / 27권 / 12호 / 1016 ~ 1022페이지
    · 저자명 : 김준용, 김성흠

    초록

    Most machine vision solutions for intelligent transport systems begin with the extraction of hand-crafted visual features from traffic scenes. In this study, the category-specific information for detecting specific visual patterns was investigated by replacing machine vision solutions with a standard convolutional neural network (CNN)-based object detector, and three practical applications of the system were developed. First, our system learned important categories, such as pedestrian and vehicles, for traffic monitoring and management. In addition, while collecting related databases, we efficiently performed data augmentation and improved the recognition accuracy of the system for several user-defined events. Further, the displacement of the detected positions between consecutive frames was converted into the real-world distance to compute the physical velocity of a vehicle. Second, we developed a vision-based system for a real-time lane-level traffic congestion measurement. After tracking the detected vehicles, the estimated velocities of vehicles for each lane were averaged. Subsequently, traffic congestion was determined based on the number of detected vehicles and averaged velocity. Third, we presented a context-aware method for background maintenance. To handle dynamic background objects, we utilized a 2D object detector to identify the category-specific background patterns. The key observation was that the detected regions do not belong to a true background. Hence, we developed a new confidence map to update the static background model and exclude pre-learnt background objects for conventional background subtraction methods. In the study, more than eight user-defined events were suggested by the combination of traditional machine vision techniques and deep learning-based object detectors with a substantial number of training images. In addition, our key ideas were validated using various datasets, such as five different scenes for lane-level traffic congestion and two CCTV image sequences for object-aware background subtraction and unseen object detection in the challenging traffic congestion. Lastly, the suggested applications of this system for intelligent transport systems were successfully demonstrated.

    영어초록

    Most machine vision solutions for intelligent transport systems begin with the extraction of hand-crafted visual features from traffic scenes. In this study, the category-specific information for detecting specific visual patterns was investigated by replacing machine vision solutions with a standard convolutional neural network (CNN)-based object detector, and three practical applications of the system were developed. First, our system learned important categories, such as pedestrian and vehicles, for traffic monitoring and management. In addition, while collecting related databases, we efficiently performed data augmentation and improved the recognition accuracy of the system for several user-defined events. Further, the displacement of the detected positions between consecutive frames was converted into the real-world distance to compute the physical velocity of a vehicle. Second, we developed a vision-based system for a real-time lane-level traffic congestion measurement. After tracking the detected vehicles, the estimated velocities of vehicles for each lane were averaged. Subsequently, traffic congestion was determined based on the number of detected vehicles and averaged velocity. Third, we presented a context-aware method for background maintenance. To handle dynamic background objects, we utilized a 2D object detector to identify the category-specific background patterns. The key observation was that the detected regions do not belong to a true background. Hence, we developed a new confidence map to update the static background model and exclude pre-learnt background objects for conventional background subtraction methods. In the study, more than eight user-defined events were suggested by the combination of traditional machine vision techniques and deep learning-based object detectors with a substantial number of training images. In addition, our key ideas were validated using various datasets, such as five different scenes for lane-level traffic congestion and two CCTV image sequences for object-aware background subtraction and unseen object detection in the challenging traffic congestion. Lastly, the suggested applications of this system for intelligent transport systems were successfully demonstrated.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“제어.로봇.시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:42 오후