• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

그라운드-롤 제거를 위한 CNN과 GAN 기반 딥러닝 모델 비교 분석 (Comparison of CNN and GAN-based Deep Learning Models for Ground Roll Suppression)

15 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2023.05
15P 미리보기
그라운드-롤 제거를 위한 CNN과 GAN 기반 딥러닝 모델 비교 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국지구물리.물리탐사학회
    · 수록지 정보 : 지구물리와 물리탐사 / 26권 / 2호 / 37 ~ 51페이지
    · 저자명 : 조상인, 편석준

    초록

    그라운드-롤(ground roll)은 육상 탄성파 탐사 자료에서 가장 흔하게 나타나는 일관성 잡음(coherent noise)이며 탐사를 통해 얻고자 하는 반사 이벤트 신호보다 훨씬 큰 진폭을 가지고 있다. 따라서 탄성파 자료 처리에서 그라운드-롤 제거는 매우 중요하고 필수적인 과정이다. 그라운드-롤 제거를 위해 주파수-파수 필터링, 커브릿(curvelet) 변환 등 여러 제거 기술이 개발되어 왔으나 제거 성능과 효율성을 개선하 기 위한 방법에 대한 수요는 여전히 존재한다. 최근에는 영상처리 분야에서 개발된 딥러닝 기법들을 활용하여 탄성파 자료의 그라운드- 롤을 제거하고자 하는 연구도 다양하게 수행되고 있다. 이 논문에서는 그라운드-롤 제거를 위해 CNN (convolutional neural network) 또는 cGAN (conditional generative adversarial network)을 기반으로 하는 세가지 모델(DnCNN (De-noiseCNN), pix2pix, CycleGAN)을 적용한 연 구들을 소개하고 수치 예제를 통해 상세히 설명하였다. 알고리듬 비교를 위해 동일한 현장에서 취득한 송신원 모음을 훈련 자료와 테스 트 자료로 나누어 모델을 학습하고, 모델 성능을 평가하였다. 이러한 딥러닝 모델은 현장자료를 사용하여 훈련할 때, 그라운드-롤이 제거 된 자료가 필요하므로 주파수-파수 필터링으로 그라운드-롤을 제거하여 정답자료로 사용하였다. 딥러닝 모델의 성능 평가 및 훈련 결과 비교는 정답 자료와의 유사성을 기본으로 상관계수와 SSIM (structural similarity index measure)과 같은 정량적 지표를 활용하였다. 결과 적으로 DnCNN 모델이 가장 좋은 성능을 보였으며, 다른 모델들도 그라운드-롤 제거에 활용될 수 있음을 확인하였다.

    영어초록

    The ground roll is the most common coherent noise in land seismic data and has an amplitude much larger than the reflection event we usually want to obtain. Therefore, ground roll suppression is a crucial step in seismic data processing. Several techniques, such as f-k filtering and curvelet transform, have been developed to suppress the ground roll. However, the existing methods still require improvements in suppression performance and efficiency. Various studies on the suppression of ground roll in seismic data have recently been conducted using deep learning methods developed for image processing. In this paper, we introduce three models (DnCNN (De-noiseCNN), pix2pix, and CycleGAN), based on convolutional neural network (CNN) or conditional generative adversarial network (cGAN), for ground roll suppression and explain them in detail through numerical examples. Common shot gathers from the same field were divided into training and test datasets to compare the algorithms. We trained the models using the training data and evaluated their performances using the test data. When training these models with field data, ground roll removed data are required; therefore, the ground roll is suppressed by f-k filtering and used as the ground-truth data. To evaluate the performance of the deep learning models and compare the training results, we utilized quantitative indicators such as the correlation coefficient and structural similarity index measure (SSIM) based on the similarity to the ground-truth data. The DnCNN model exhibited the best performance, and we confirmed that other models could also be applied to suppress the ground roll.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지구물리와 물리탐사”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 29일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:22 오후