• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

Gaofen-1 WFV 영상을 이용한 딥러닝 기반 대형 부유조류 분류 (Deep Learning Based Floating Macroalgae Classification Using Gaofen-1 WFV Images)

15 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2020.04
15P 미리보기
Gaofen-1 WFV 영상을 이용한 딥러닝 기반 대형 부유조류 분류
  • 미리보기

    서지정보

    · 발행기관 : 대한원격탐사학회
    · 수록지 정보 : 대한원격탐사학회지 / 36권 / 2호 / 293 ~ 307페이지
    · 저자명 : 김의현, 김근용, 김수미, Tingwei Cui, 유주형

    초록

    매년 황해와 동중국해에서는 대형 부유조류인 녹조와 갈조가 대량으로 발생하고 있다. 이러한 대형 부유조류는 연안의 양식 시설물이나 해변으로 유입되며, 제거하는데 막대한 경제적 손실을 발생시킨다. 현재는연안으로 유입되는 대형 부유조류를 탐지하기 위해 원격탐사 방법이 활발하게 사용되고 있다. 그러나 대형 부유조류는 해양의 다양한 대상들과 중첩되는 파장이 존재하기에 이를 정확하게 탐지하는데 한계가 있다. 더욱이 녹조와 갈조는 유사한 스펙트럼 특성을 보이기 때문에 원격탐사 자료를 이용한 구분을 더욱 어렵게 만든다.
    따라서 본 연구에서는 위성 영상에 딥러닝 기법을 적용하여 녹조와 갈조를 효과적으로 구분하고자 하였다. 이를 위한 네트워크를 결정하기 위해 최적의 학습 조건을 찾아 AlexNet 신경망을 전이 학습하였으며, 학습과 검증을 위해 Gaofen-1 WFV 영상을 이용하여 데이터셋을 구성하였다. 최적의 학습 조건으로 학습된 네트워크를이용하여 실험 데이터에 대한 결과를 확인하였다. 그 결과 실험 데이터에 대한 정확도는 88.89%를 보였으며, 녹조와 갈조에 대해 각각 66.67%와 100%의 정밀도로 구분이 가능하였다. 이는 전이 학습된 AlexNet 신경망이녹조와 갈조의 미세한 차이를 구분할 수 있는 것으로 해석된다. 본 연구를 통해 해양의 다양한 대상으로부터녹조와 갈조를 효과적으로 분류하고 각각 구분할 수 있을 것으로 기대된다.

    영어초록

    Every year, the floating macroalgae, green and golden tide, are massively detected at the Yellow Sea and East China Sea. After influx of them to the aquaculture facility or beach, it occurs enormous economic losses to remove them. Currently, remote sensing is used effectively to detect the floating macroalgae flowed into the coast. But it has difficulties to detect the floating macroalgae exactly because of the wavelength overlapped with other targets in the ocean. Also, it is difficult to distinguish between green and golden tide because they have similar spectral characteristics. Therefore, we tried to distinguish between green and golden tide applying the Deep learning method to the satellite images. To determine the network, the optimal training conditions were searched to train the AlexNet. Also, Gaofen- 1 WFV images were used as a dataset to train and validate the network. Under these conditions, the network was determined after training, and used to confirm the test data. As a result, the accuracy of test data is 88.89%, and it can be possible to distinguish between green and golden tide with precision of 66.67% and 100%, respectively. It is interpreted that the AlexNet can be pick up on the subtle differences between green and golden tide. Through this study, it is expected that the green and golden tide can be effectively classified from various objects in the ocean and distinguished each other.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한원격탐사학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 09일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:14 오후