PARTNER
검증된 파트너 제휴사 자료

데이터 구성에 따른 하천 조류 예측 딥러닝 모형 (TabPFN) 성능 비교 (Comparing the Performance of a Deep Learning Model (TabPFN) for Predicting River Algal Blooms with Varying Data Composition)

7 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2024.08
7P 미리보기
데이터 구성에 따른 하천 조류 예측 딥러닝 모형 (TabPFN) 성능 비교
  • 미리보기

    서지정보

    · 발행기관 : 한국습지학회
    · 수록지 정보 : 한국습지학회지 / 26권 / 3호 / 197 ~ 203페이지
    · 저자명 : 양현석, 박정수

    초록

    하천에서 조류의 과다 발생은 취수원 관리 및 정수 처리에 악영향을 줄 수 있어 지속적인 관리가 필요하다. 본 연구에서는 딥러닝 알고리즘 중 작은 규모의 테이블 데이터에서도 상대적으로 우수한 성능을 보이는 것으로 알려진 tabular prior data fitted networks (TabPFN)을 사용하여 조류 발생 지표 중 하나인 chlorophyll-a (chl-a) 농도를 예측하는다중 분류 모형을 구축하였다. 모형의 구축을 위해 부여지점 수질자동측정망에서 2014년 1월 1일부터 2022년 12월31일까지 측정된 일일측정자료를 사용하였으며 입력 자료의 크기가 모형의 성능에 미치는 영향을 확인하기 위해 입력 자료의 평균값을 이용하여 1일, 3일, 6일, 12일의 측정 주기를 가진 입력 자료를 구성하였다. 각 모형의 성능을 비교한 결과 측정 주기가 길어져 입력 자료의 규모가 작은 경우에도 모형이 안정적인 성능을 보이는 것을 확인하였다.
    각 모형의 macro average는 precision이 0.77, 0.76, 0.83, 0.84였으며, recall은 0.63, 0.65, 0.66, 0.74 F1-score는0.67, 0.69, 0.71, 0.78로 분석되었다. Weighted average는 precision이 0.76, 0.77, 0.81, 0.84이며 recall은 0.76, 0.78, 0.81, 0.85 F1-score는 0.74, 0.77, 0.80, 0.84로 분석되었다. 본 연구에서는 TabPFN을 이용하여 구축한 chl-a 예측 모형이 작은 규모의 입력 자료에서도 안정적인 성능을 보이는 것을 확인하여 모형구축에 필요한 입력 자료가 제한적인 현장에서의 적용 가능성을 확인하였다.

    영어초록

    The algal blooms in rivers can negatively affect water source management and water treatment processes, necessitating continuous management. In this study, a multi-classification model was developed to predict the concentration of chlorophyll-a (chl-a), one of the key indicators of algal blooms, using Tabular Prior Fitted Networks (TabPFN), a novel deep learning algorithm known for its relatively superior performance on small tabular datasets.
    The model was developed using daily observation data collected at Buyeo water quality monitoring station from January 1, 2014, to December 31, 2022. The collected data were averaged to construct input data sets with measurement frequencies of 1 day, 3 days, 6 days, 12 days. The performance comparison of the four models, constructed with input data on observation frequencies of 1 day, 3 days, 6 days, and 12 days, showed that the model exhibits stable performance even when the measurement frequency is longer and the number of observations is smaller. The macro average for each model were analyzed as follows: Precision was 0.77, 0.76, 0.83, 0.84; Recall was 0.63, 0.65, 0.66, 0.74; F1-score was 0.67, 0.69, 0.71, 0.78. For the weighted average, Precision was 0.76, 0.77, 0.81, 0.84; Recall was 0.76, 0.78, 0.81, 0.85; F1-score was 0.74, 0.77, 0.80, 0.84. This study demonstrates that the chl-a prediction model constructed using TabPFN exhibits stable performance even with small-scale input data, verifying the feasibility of its application in fields where the input data required for model construction is limited.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국습지학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 02일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:15 오후