PARTNER
검증된 파트너 제휴사 자료

딥러닝 기반 탄성파 단층 해석을 위한 합성 학습 자료 생성 (Synthetic Training Data Generation for Fault Detection Based on Deep Learning)

9 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2021.08
9P 미리보기
딥러닝 기반 탄성파 단층 해석을 위한 합성 학습 자료 생성
  • 미리보기

    서지정보

    · 발행기관 : 한국지구물리.물리탐사학회
    · 수록지 정보 : 지구물리와 물리탐사 / 24권 / 3호 / 89 ~ 97페이지
    · 저자명 : 최우창, 편석준

    초록

    탄성파 자료에서의 단층 해석은 기계학습을 적용하기 매우 적합한 분야라고 할 수 있다. 결과적으로 다양한 형태의 기계학습 기반 단층 해석 기술들이 개발되고 있으며, 특히 합성 자료를 사용해 기계학습 모델을 훈련시키는 연구들이 중점적으로 수행되고 있다. 합성 자료 를 사용할 경우 기계학습 모델을 훈련시키기 위한 대량의 자료를 확보하기가 용이하고, 정확한 단층 구조 라벨을 함께 제작할 수 있다는 장점이 있다. 합성 자료로 훈련시킨 모델을 사용해 현장 자료를 해석하기 위해서는 모델 훈련에 사용한 합성 자료가 지질학적으로 현실 적이어야 한다. 이 연구에서는 실제 현장 자료와 유사한 합성 자료 제작을 위한 기술을 소개한다. 먼저 현실적인 단층 구조가 포함된 반 사계수 모델을 제작한 후 일방향 파동 방정식 모델링을 적용해 효율적으로 겹쌓기 단면을 생성한다. 생성된 겹쌓기 단면에 참반사보정을 적용해 회절파의 영향을 제거하고, 무작위 잡음을 추가함으로써 현장 자료와 비슷한 형태의 합성 자료를 생성할 수 있다. 생성한 합성 자 료를 U-Net 구조의 합성곱 신경망 모델에 적용하여 검증한 결과, 현실적으로 만들어진 합성 자료는 현장 자료에 적용이 가능한 딥러닝 모 델을 효과적으로 훈련시킬 수 있다는 것을 확인하였다.

    영어초록

    Fault detection in seismic data is well suited to the application of machine learning algorithms. Accordingly, various machine learning techniques are being developed. In recent studies, machine learning models, which utilize synthetic data, are the particular focus when training with deep learning. The use of synthetic training data has many advantages; Securing massive data for training becomes easy and generating exact fault labels is possible with the help of synthetic training data. To interpret real data with the model trained by synthetic data, the synthetic data used for training should be geologically realistic. In this study, we introduce a method to generate realistic synthetic seismic data. Initially, reflectivity models are generated to include realistic fault structures, and then, a one-way wave equation is applied to efficiently generate seismic stack sections. Next, a migration algorithm is used to remove diffraction artifacts and random noise is added to mimic actual field data. A convolutional neural network model based on the U-Net structure is used to verify the generated synthetic data set. From the results of the experiment, we confirm that realistic synthetic data effectively creates a deep learning model that can be applied to field data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:43 오후