• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

멀티모달 앙상블 딥러닝 네트워크를 이용한 보행 타입 분류 (Gait Type Classification Using Multi-modal Ensemble Deep Learning Network)

10 페이지
기타파일
최초등록일 2025.04.16 최종저작일 2022.11
10P 미리보기
멀티모달 앙상블 딥러닝 네트워크를 이용한 보행 타입 분류
  • 미리보기

    서지정보

    · 발행기관 : 한국컴퓨터정보학회
    · 수록지 정보 : 한국컴퓨터정보학회논문지 / 27권 / 11호 / 29 ~ 38페이지
    · 저자명 : 박희찬, 최영찬, 최상일

    초록

    본 논문에서는 멀티 센서가 장착된 스마트 인솔로 측정한 보행 데이터에 대해 앙상블 딥러닝네트워크를 이용하여 보행의 타입을 분류하는 시스템을 제안한다. 보행 타입 분류 시스템은 인솔에 의해 측정된 데이터를 정규화하는 부분과 딥러닝 네트워크를 이용하여 보행의 특징을 추출하는 부분, 그리고 추출된 특징을 입력으로 보행의 타입을 분류하는 부분으로 구성되어 있다. 서로다른 특성을 가지는 CNN과 LSTM을 기반으로 하는 네트워크를 독립적으로 학습하여 두 종류의보행 특징 맵을 추출하였으며, 각각의 분류 결과를 결합하여 최종적인 앙상블 네트워크의 분류결과를 도출하였다. 20~30대 성인의 걷기, 뛰기, 빠르게 걷기, 계단 오르기와 내려가기, 언덕 오르기와 내려가기의 7종류의 보행에 대해, 스마트 인솔을 이용하여 실측한 멀티 센서 데이터를 제안한 앙상블 네트워크로 분류해 본 결과 90% 이상의 높은 분류율을 보이는 것을 확인하였다.

    영어초록

    This paper proposes a system for classifying gait types using an ensemble deep learning network for gait data measured by a smart insole equipped with multi-sensors. The gait type classification system consists of a part for normalizing the data measured by the insole, a part for extracting gait features using a deep learning network, and a part for classifying the gait type by inputting the extracted features. Two kinds of gait feature maps were extracted by independently learning networks based on CNNs and LSTMs with different characteristics. The final ensemble network classification results were obtained by combining the classification results. For the seven types of gait for adults in their 20s and 30s: walking, running, fast walking, going up and down stairs, and going up and down hills, multi-sensor data was classified into a proposed ensemble network. As a result, it was confirmed that the classification rate was higher than 90%.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국컴퓨터정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:02 오후