PARTNER
검증된 파트너 제휴사 자료

의사결정트리에서 공간사건 예측을 위한 리프노드 등급 결정 방법 분석 (Analysis of Leaf Node Ranking Methods for Spatial Event Prediction)

11 페이지
기타파일
최초등록일 2025.04.15 최종저작일 2014.12
11P 미리보기
의사결정트리에서 공간사건 예측을 위한 리프노드 등급 결정 방법 분석
  • 미리보기

    서지정보

    · 발행기관 : 한국지리정보학회
    · 수록지 정보 : 한국지리정보학회지 / 17권 / 4호 / 101 ~ 111페이지
    · 저자명 : 연영광

    초록

    공간사건들은 데이터마이닝 분류알고리즘을 이용하여 예측 가능하며, 의사결정 트리는 대표적인 분류알고리즘들 중 하나로 사용되고 있다. 의사결정 트리는 레이블 값을 갖는 분류작업에 주로 사용되었으나 규칙평가 기법을 트리 리프노드 등급 계산에 응용하면서부터 공간사건 예측에 이용되고 있다. 이 논문에서는 의사결정 트리에서 사용되는 규칙평가 방법들을 공간예측에 적용하여 비교하였다. 실험을 위해 의사결정 트리 알고리즘인 C4.5알고리즘과 규칙 평가기법인 Laplace, M-estimate 및 m-branch 기법들을 구현하여 자연환경에서 발생되는 대표적인 공간예측 응용분야인 산사태에 적용하였다. 적용한 규칙 평가 기법들의 정확도 평가결과, 그 특성에 따라 정확도의 차이가 있었으며 m-branch가 가장 높은 성능을 보였다. 그러나 m-branch 및 M-estimate와 같이 별도의 파라미터를 갖는 경우 반복적으로 최적의 파라미터 값을 찾는 과정을 요구하였다. 따라서 적용 대상에 따라 선택적으로 활용할 수 있다. 이러한 의사결정 트리를 이용한 공간예측은 예측 결과뿐만 아니라 특정 위치에서의 예측결과에 대한 원인분석을 가능하게 함으로 다양한 응용을 가능하게 한다.

    영어초록

    Spatial events are predictable using data mining classification algorithms. Decision trees have been used as one of representative classification algorithms. And they were normally used in the classification tasks that have label class values. However since using rule ranking methods, spatial prediction have been applied in the spatial prediction problems. This paper compared rule ranking methods for the spatial prediction application using a decision tree. For the comparison experiment, C4.5 decision tree algorithm, and rule ranking methods such as Laplace, M-estimate and m-branch were implemented. As a spatial prediction case study, landslide which is one of representative spatial event occurs in the natural environment was applied. Among the rule ranking methods, in the results of accuracy evaluation, m-branch showed the better accuracy than other methods. However in case of m-brach and M-estimate required additional time-consuming procedure for searching optimal parameter values. Thus according to the application areas, the methods can be selectively used. The spatial prediction using a decision tree can be used not only for spatial predictions, but also for causal analysis in the specific event occurrence location.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지리정보학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:55 오전