• AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
  • AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

장면의 유사도 패턴 비교를 이용한 내용기반 동영상 분할 알고리즘 (Content based Video Segmentation Algorithm using Comparison of Pattern Similarity)

10 페이지
기타파일
최초등록일 2025.04.13 최종저작일 2011.10
10P 미리보기
장면의 유사도 패턴 비교를 이용한 내용기반 동영상 분할 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 한국멀티미디어학회
    · 수록지 정보 : 멀티미디어학회논문지 / 14권 / 10호 / 1252 ~ 1261페이지
    · 저자명 : 원인수, 조주희, 나상일, 진주경, 정재협, 정동석

    초록

    본 논문은 내용기반 동영상 분할을 위한 장면의 유사도 패턴 비교 방법을 제안한다. 동영상 장면 전환의 종류는 크게 급진적 전환과 디졸브(dissolve), 페이드인(fade-in), 페이드아웃(fade-out), 와이프 전환(wipe transition)을 포함하는 점진적 전환 형태로 나눌 수 있다. 제안하는 방법은 모든 종류의 장면 전환 검출 문제를 단지 발생 유무의 문제로 간단 정의하고, 장면 전환 종류는 별도로 구분하지 않는다. 장면 전환을 검출하기 위해서는 프레임간의 유사도를 정의해야 한다. 본 논문에서는 장면 내 유사도(within similarity)와 장면 간 유사도(between similarity)를 정의하며 두 유사도의 통계적 패턴 비교를 통하여 최종적으로 장면 전환을 검출하게 된다. 장면 내 유사도와 장면 간 유사도의 비율을 구하는 방법을 통해 플래시라이트나 영상 내 물체 움직임에 대한 거짓 양성 검출을 별도의 후처리 과정 없이도 방지할 수 있음을 확인하였다. 프레임의 특징 값으로는 컬러 히스토그램과 프레임 내 평균 화소값을 이용하였다. TREC-2001, TREC-2002 동영상 셋을 포함한 실험 셋에서 성능을 평가한 결과 제안하는 알고리즘의 경우 총 91.84%의 재현율(recall)과 86.43%의 정확도(precision)의 성능을 보임을 확인할 수 있었다.

    영어초록

    In this paper, we propose the comparison method of pattern similarity for video segmentation algorithm. The shot boundary type is categorized as 2 types, abrupt change and gradual change. The representative examples of gradual change are dissolve, fade-in, fade-out or wipe transition. The proposed method consider the problem to detect shot boundary as 2-class problem. We concentrated if the shot boundary event happens or not. It is essential to define similarity between frames for shot boundary detection. We proposed 2 similarity measures, within similarity and between similarity. The within similarity is defined by feature comparison between frames belong to same shot. The between similarity is defined by feature comparison between frames belong to different scene. Finally we calculated the statistical patterns comparison between the within similarity and between similarity. Because this measure is robust to flash light or object movement, our proposed algorithm make contribution towards reducing false positive rate. We employed color histogram and mean of sub-block on frame image as frame feature. We performed the experimental evaluation with video dataset including set of TREC-2001 and TREC-2002. The proposed algorithm shows the performance, 91.84% recall and 86.43% precision in experimental circumstance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“멀티미디어학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 프레시홍 - 추석
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 09월 23일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
1:30 오후