• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

사전학습 모델 기반 발화 동영상 멀티 모달 감정 인식 (Multi-Modal Emotion Recognition in Videos Based on Pre-Trained Models)

9 페이지
기타파일
최초등록일 2025.04.13 최종저작일 2024.10
9P 미리보기
사전학습 모델 기반 발화 동영상 멀티 모달 감정 인식
  • 미리보기

    서지정보

    · 발행기관 : (사)한국스마트미디어학회
    · 수록지 정보 : 스마트미디어저널 / 13권 / 10호 / 19 ~ 27페이지
    · 저자명 : 김은희, 신주현

    초록

    최근 비대면 상담의 수요가 급증하면서, 텍스트뿐만 아니라 음성, 얼굴 표정 등 다양한 모달리티를 결합한 감정 인식 기술의 필요성이 강조되고 있다. 본 논문에서는 FER-2013, CK+, AFEW와 같은 기존 데이터셋의 외국인 중심, 감정 라벨 불균형 등의 문제를 해결하기 위해 한국어 동영상 데이터를 활용하고, 텍스트 모달리티를 기반으로 이미지 모달리티의 장점을 결합하여 동영상에서 멀티모달 감정 인식의 성능을 향상시키는 방법을 제안하고자 한다. 적은 데이터 학습 데이터로 인한 한계를 극복하기 위해 사전학습 모델을 활용하였는데, 텍스트는 GPT-4 기반의 LLM 모델을 적용하고, 얼굴 표정 이미지는 VGG-19 아키텍처 기반의 사전학습 모델을 파인튜닝하여 적용하였다. 사전 학습을 활용하여 추출된 각 모달리티별 감정 결과를 결합하여 대표 감정을 추출하는 방법은 텍스트에서 추출한 감정 정보와 동영상에서의 얼굴 표정 변화를 결합하는 방법으로 텍스트와 이미지 간 감정 불일치 상황에서 임곗값을 적용하여 텍스트 기반 감정을 신뢰할 수 있을 때 우선 선택하는 전략과 프레임별 감정 분포 정보를 활용하여 대표 감정을 조정하는 전략을 적용하여 기존 프레임별 감정 평균값을 사용하는 방법에 비해 F1-Score를 기준으로 19%의 성능을 향상시킬 수 있었다.

    영어초록

    Recently, as the demand for non-face-to-face counseling has rapidly increased, the need for emotion recognition technology that combines various aspects such as text, voice, and facial expressions is being emphasized. In this paper, we address issues such as the dominance of non-Korean data and the imbalance of emotion labels in existing datasets like FER-2013, CK+, and AFEW by using Korean video data. We propose methods to enhance multimodal emotion recognition performance in videos by integrating the strengths of image modality with text modality. A pre-trained model is used to overcome the limitations caused by small training data. A GPT-4-based LLM model is applied to text, and a pre-trained model based on VGG-19 architecture is fine-tuned to facial expression images. The method of extracting representative emotions by combining the emotional results of each aspect extracted using a pre-trained model is as follows. Emotion information extracted from text was combined with facial expression changes in a video. If there was a sentiment mismatch between the text and the image, we applied a threshold that prioritized the text-based sentiment if it was deemed trustworthy. Additionally, as a result of adjusting representative emotions using emotion distribution information for each frame, performance was improved by 19% based on F1-Score compared to the existing method that used average emotion values ​​for each frame.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“스마트미디어저널”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 29일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:23 오후