• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

신경망과 의사결정 나무를 이용한 충수돌기염 환자의 재원일수 예측모형 개발 (Length-of-Stay Prediction Model of Appendicitis using Artificial Neural Networks and Decision Tree)

9 페이지
기타파일
최초등록일 2025.04.13 최종저작일 2009.06
9P 미리보기
신경망과 의사결정 나무를 이용한 충수돌기염 환자의 재원일수 예측모형 개발
  • 미리보기

    서지정보

    · 발행기관 : 한국산학기술학회
    · 수록지 정보 : 한국산학기술학회논문지 / 10권 / 6호 / 1424 ~ 1432페이지
    · 저자명 : 정석훈, 한우석, 서용무, 이현실

    초록

    충수돌기염 환자의 LoS(Length of Stay)를 예측하는 것은 병상의 운영에 적지 않은 영향을 준다. 본 논문에서는 Neural Networks와 Decision Tree를 이용하여 LoS와 연관이 높은 입력변수들을 찾아 그 의미를 분석하며, 찾아낸 입력변수들을 이용하여 다양한 LoS 예측 모형을 개발하고 그 성능을 비교하였다. 모형의 예측 정확성을 높이기 위하여 Bagging과 Boosting 등의 Ensemble 기법도 적용하였다. 실험 결과, Decision Tree 모형이 Neural Networks 모형보다 좀 더 적은 수의 속성을 가지고도 거의 동일한 예측력을 보였으며, Ensemble 기법 중에서는 Bagging 기법이 Boosting 기법보다 좋은 결과를 보여주었다. 의사결정나무 기법은 Neural Networks 기법에 비해 설명력이 있으며, 충수돌기염의 LoS 예측에 매우 효과적이었고, 중요 입력 변수의 선정에도 좋은 결과를 보여줌에 따라 향후 적극적인 기법의 도입이 필요하다고 할 수 있다.

    영어초록

    For the efficient management of hospital sickbeds, it is important to predict the length of stay (LoS) of appendicitis patients. This study analyzed the patient data to find factors that show high positive correlation with LoS, build LoS prediction models using neural network and decision tree models, and compare their performance. In order to increase the prediction accuracy, we applied the ensemble techniques such as bagging and boosting. Experimental results show that decision tree model which was built with less number of variables shows prediction accuracy almost equal to that of neural network model, and that bagging is better than boosting. In conclusion, since the decision tree model which provides better explanation than neural network model can well predict the LoS of appendicitis patients and can also be used to select the input variables, it is recommended that hospitals make use of the decision tree techniques more actively.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산학기술학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 21일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:03 오후