PARTNER
검증된 파트너 제휴사 자료

온라인 댓글의 주제 분석을 위한 토픽 모델링 : 이슈 포착과 분류에 활용 가능한 LDA와 BTM의 비교와 검증 (Topic Modeling for Analyzing Online Comments : Comparing and Validating LDA and BTM for Capturing and Classifying Issues)

35 페이지
기타파일
최초등록일 2025.04.11 최종저작일 2023.08
35P 미리보기
온라인 댓글의 주제 분석을 위한 토픽 모델링 : 이슈 포착과 분류에 활용 가능한 LDA와 BTM의 비교와 검증
  • 미리보기

    서지정보

    · 발행기관 : 한국언론학회
    · 수록지 정보 : 한국언론학보 / 67권 / 4호 / 89 ~ 123페이지
    · 저자명 : 이신행

    초록

    토픽 모델링은 컴퓨터를 이용해 빠르고 쉽게 방대한 양의 정보를 구성하거나 파악하는 모델을 추정하는 비지도 기계학습 방법으로 문서를 비슷한 토픽별로 묶어내거나 토픽의 내용과 분포를 파악하고자 할 때 활용된다. 그런데 토픽 모델링을 미디어 연구에 활용함에 있어 이론적으로 정의된 개념을 타당하고 신뢰할 수 있는 측정하는 방법으로써의 고민이 부족했다는 지적이 최근 제기되고 있다. 대단위 텍스트 자료를 탐색하고 요약하는 도구인 토픽 모델링을 미디어 연구에 활용하기 위해서 방법적 타당성 검증과 신뢰성 확보가 필요하다는 것이다. 더욱이, 온라인 플랫폼을 통해 거대한 규모로 빠르게 발생하고 있는 댓글을 ‘이슈’에 따라 분류하고 그 주요 주제를 요약하는 방법은 사회적 쟁점을 즉각적으로 파악하고 담론 양상을 통시적으로 추적하는데 유용하다. 이러한 이유에서 댓글의 주제를 분석하기 위한 토픽 모델링의 방법적 타당성을 진단하는 시도는 그 의의가 크다고 할 수 있다. 이에 본 연구는 온라인 댓글의 주제 분석을 위한 토픽 모델링 방법을 제시하고 그 성능과 타당성을 다음과 같이 검증했다. 우선, 온라인 댓글의 맥락에서 다뤄지는 ‘이슈’에 대한 개념화를 통해 댓글의 주제 분석이 왜 필요하고 어떠한 함의가 있는 것인지에 대해 논의했다. 그리고 토픽 모델링이 텍스트의 주제를 추정하는 원리와 주제 추정에 영향을 미치는 통계 모델로써의 가정들에 대해 Latent Dirichlet Allocation(LDA) 모델을 중심으로 살펴봤다. 또한 댓글의 주제를 포착하고 ‘이슈’별로 분류하기 위한 토픽 모델링을 제안하고자 LDA와 Biterm Topic Model(BTM)의 성능과 한계를 비교했다. 이상의 이론적 논의를 토대로 9개의 사회적 이슈를 다루고 있는 기사에 달린 9,000건의 온라인 뉴스 댓글을 토픽 모델링으로 분석해 주제를 추정하고 이에 따라 댓글이 뉴스의 ‘이슈’에 따라 분류되는지를 모델별로 비교 검증했다. 그 결과는 다음과 같다. 첫째, BTM에 비해 LDA는 초모수 에 많은 영향을 받았는데 값이 낮아질수록 모델의 성능이 좋아졌다. 둘째, BTM과 LDA 모두 최적의 주제의 개수(K)를 추정할 수 있었으나, BTM이 K값 선정에 따른 성능 변화가 LDA보다 적었고 K값이 최적의 값보다 클 때보다 낮을 때 성능 저하가 심해졌다. 셋째, BTM과 LDA 모두 분석 단어 목록에 단일 형태소와 함께 바이그램(bigram)을 추가할 때 성능이 좋아졌으나 그 차이는 LDA에서 더욱 뚜렸했다. 이러한 검증 결과를 토대로 댓글의 주제 분석을 위한 토픽 모델링의 활용 가능성을 진단하고 그 함의를 논의했다.

    영어초록

    Using computers to rapidly and efficiently build a model to organize massive volumes of textual data, topic modeling is an unsupervised machine learning technique that can be used to classify texts into related themes or to analyze the nature and distribution of topics. However, topic modeling's usage in media research has recently come under fire for failing to take into account reliable and valid measures of theoretically defined concepts. This means that topic modeling needs methodological validation and reliability in order to be employed in media research as a tool for investigating and summarizing massive volumes of textual material. Additionally, it is helpful to be able to group online comments into "issues" and list their important points in order to quickly identify social issues and monitor discourse patterns in real-time on digital platforms. For this reason, attempts to diagnose the methodological validity of topic modeling for analyzing the topics of comments are of great significance. Therefore, this study validates topic modeling for analyzing online comments by verifying its performance as follows. First, we discussed why topic analysis of comments is necessary and what the implications are through the conceptualization of "issues" in the context of online comments. Then, with an emphasis on the Latent Dirichlet Allocation (LDA) model, we reviewed the principle of topic modeling to estimate the topic of text and the assumptions of statistical models that affect topic estimation. Additionally, we contrasted the merits and drawbacks of LDA and the Biterm Topic Model (BTM) to suggest topic modeling as a means of identifying the subject of comments and categorizing them as "issues." Based on the above theoretical discussion, we applied topic modeling to analyze 9,000 online news comments on articles covering nine social issues and validate whether the topics are useful to classify comments according to the "issues" of the news. The results are as follows. First, compared to BTM, LDA is highly dependent on the hyperparameter, , with lower values leading to better model performance. Second, both BTM and LDA were able to estimate the optimal number of topics (K ), but BTM showed less variation in performance with value selection than LDA, and performance degradation was worse when the value was lower than the optimal K than when it was higher. Third, both BTM and LDA performed better when adding bigrams along with unigrams to the vocabulary, but the difference was more pronounced for LDA. Based on these validation results, we assessed the validity of topic modeling for analysis of comments and discussed its implications.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:07 오후