PARTNER
검증된 파트너 제휴사 자료

이벤트분리와 지수평활법의 적용을 통한 단순 물수지 방법의 유입량 추정 변동성 개선으로 LSTM의 댐유입량 예측성능 향상 연구 (Enhancing Dam Inflow Prediction Performance of LSTM using Improved Inflow Fluctuation of the Simple Water Balance Method by Applying Event Identification and Exponential Smoothing)

10 페이지
기타파일
최초등록일 2025.04.11 최종저작일 2025.02
10P 미리보기
이벤트분리와 지수평활법의 적용을 통한 단순 물수지 방법의 유입량 추정 변동성 개선으로 LSTM의 댐유입량 예측성능 향상 연구
  • 미리보기

    서지정보

    · 발행기관 : (사)위기관리이론과실천
    · 수록지 정보 : Crisisonomy / 21권 / 2호 / 123 ~ 132페이지
    · 저자명 : 최영돈, 김성훈

    초록

    최근 LSTM(Long Short-Term Memory)모델에 대한 연구는 강수-유출 분석에서의 성능은 기존 물리 기반 강우-유출 모델에 비해 더 우수한 성과를 보여주고 있습니다.. 그러나 데이터 품질관리는 LSTM과 같은 Data-Driven모델에서는 모델의 성능 향상을 위해 여전히 중요한 요소입니다. 본 연구에서는 기존 단순 물수지 분석법(Simple Water Balance method)으로 추정된 시간단위 유입량의 변동성을 감소시키기 위해 이벤트 식별(Event Identification) 및 지수 평활화(Exponential Smoothing) 방법(EI&ES)을 적용하여 데이터 전처리를 하였습니다. 이후 (1) 기존방법, (2) 이동평균, (3) EI&ES방법으로 12가지 Cases에 대해서 LSTM모델을 NSE(Nash-Sutcliffe Efficiency), RMSE(Root Mean Square Error), MSE(Mean Squared Error)와 같은 성능 지표로 평가한 결과, EI&ES방법이 높은 성능을 보임을 알 수 있었습니다. 본 연구는 새로운 딥러닝 방법뿐만 아니라, 딥러닝 성능을 향상시키는 데 중요한 데이터 중심 연구를 강수-유출 분석의 사례로 제시하고 있습니다.

    영어초록

    The performance of LSTMs in analyzing rainfall-runoff dynamics has demonstrated better performance over the physically-based hydrological models. However, data quality remains crucial to further improve the performance of LSTM. In this study, we applied the Integration of Event Identification & Exponential Smoothing (EI & ES) methods to reduce the fluctuations in inflow estimation, which are typically calculated by the Simple Water Balance method. The preprocessed inflow data was then used to train a LSTM, demonstrating a noticeable improvement with 12 different inflow preprocessing cases in performance metrics such as NSE, RMSE, and MSE for hourly dam inflow prediction. This research presents not only new deep learning methods but also data-centric research that is critical to improving the performance of deep learning as an example of rainfall-runoff analysis.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“Crisisonomy”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 07월 29일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:12 오후