• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

준분포형 및 집중형 GR4J 수문모형을 활용한 순차자료동화 기반 유량 예측 특성 비교: 남강댐 유역 사례 (Comparative assessment of sequential data assimilation-based streamflow predictions using semi-distributed and lumped GR4J hydrologic models: a case study of Namgang Dam basin)

14 페이지
기타파일
최초등록일 2025.04.11 최종저작일 2024.09
14P 미리보기
준분포형 및 집중형 GR4J 수문모형을 활용한 순차자료동화 기반 유량 예측 특성 비교: 남강댐 유역 사례
  • 미리보기

    서지정보

    · 발행기관 : 한국수자원학회
    · 수록지 정보 : 한국수자원학회 논문집 / 57권 / 9호 / 585 ~ 598페이지
    · 저자명 : 이가림, 우동국, 노성진

    초록

    자연재해를 사전에 대비하고 효율적인 수자원 관리를 하기 위해서는 수문모형의 구조적 특성이 예측 성능에 미치는 영향을 파악하고 불확실성을 최소화하여 수문예측의 정확도를 향상시키는 것이 중요하다. 본 연구에서는 모형의 구조가 상이한 준분포형과 집중형 GR4J 모형을 순차 자료동화 기법과 연계 적용하여 하천 유량 모의성능에 미치는 영향을 분석하였다. 이를 위해 남강댐 유역에 대해 앙상블 칼만 필터(Ensemble Kalman Filter, EnKF)와 파티클 필터(Particle Filter, PF) 기법을 적용하였다. 모의결과, 두 수문모형의 Kling-Gupta efficiency (KGE) 지표는 파티클 필터 적용시 0.749(집중형), 0.831(준분포형)로, 집중형 모형 보다 준분포형 모형에서 0.082(11.0%) 향상되었다. 또한, 자료동화와 관련된 하이퍼-매개변수 중 기상강제력(강수, 잠재증발산) 불확실성이 모의성능에 미치는 영향을 분석하였다. 집중형 모형은 수문자료동화 기법에 따라, 준분포형 모형은 각 하위유역에 따라 최적 성능을 얻기 위한 불확실성 조건이 상이하였다. 한편, 자료동화 성능에 보정 및 검정기간의 비율이 미치는 영향을 평가한 결과, 앙상블 칼만 필터는 보정기간이 짧아질수록 자료동화 성능은 감소하였으나, 파티클 필터는 상대적으로 영향을 적게 받았다. 또한, 자료동화의 최적성능을 얻기 위해서는 모형 구조에 따른 적절한 하이퍼-매개변수와 보정기간 선정이 중요함을 확인하였다.

    영어초록

    To mitigate natural disasters and efficiently manage water resources, it is essential to enhance hydrologic prediction while reducing model structural uncertainties. This study analyzed the impact of lumped and semi-distributed GR4J model structures on simulation performance and evaluated uncertainties with and without data assimilation techniques. The Ensemble Kalman Filter (EnKF) and Particle Filter (PF) methods were applied to the Namgang Dam basin. Simulation results showed that the Kling-Gupta efficiency (KGE) index was 0.749 for the lumped model and 0.831 for the semi-distributed model, indicating improved performance in semi-distributed modeling by 11.0%. Additionally, the impact of uncertainties in meteorological forcings (precipitation and potential evapotranspiration) on data assimilation performance was analyzed. Optimal uncertainty conditions varied by data assimilation method for the lumped model and by sub-basin for the semi-distributed model. Moreover, reducing the calibration period length during data assimilation led to decreased simulation performance. Overall, the semi-distributed model showed improved flood simulation performance when combined with data assimilation compared to the lumped model. Selecting appropriate hyper-parameters and calibration periods according to the model structure was crucial for achieving optimal performance.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 콘크리트 마켓 시사회
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 25일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:30 오후