PARTNER
검증된 파트너 제휴사 자료

웨이블렛 변환을 적용한 인공신경망에 의한 충주댐 일유입량 예측 (Forecast of the Daily Inflow with Artificial Neural Network using Wavelet Transform at Chungju Dam)

10 페이지
기타파일
최초등록일 2025.04.11 최종저작일 2012.12
10P 미리보기
웨이블렛 변환을 적용한 인공신경망에 의한 충주댐 일유입량 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국수자원학회
    · 수록지 정보 : 한국수자원학회 논문집 / 45권 / 12호 / 1321 ~ 1330페이지
    · 저자명 : 류용준, 신주영, 남우성, 허준행

    초록

    본 연구에서는 비선형적 모델인 웨이블렛-인공신경망을 적용하여 충주댐 유역의 일유입량을 예측하였다. 일반적으로 시계열 자료는 경향성, 주기성 및 추계학적 성분의 선형조합으로 이루어져 있다. 그러나 이러한 자료를 통해 시계열 모형 구축 시 경향성 및 주기성은 제거되어야하는 성분이다. 따라서 수문기상자료에 포함되어있는 경향성 및 주기성과 같은 비선형 동역학적 잡음과 측정과정에서 발생하는 단순잡음을 제거시키기 위해 디노이징기법인 웨이블렛 변환을 적용하였다. 웨이블렛 변환을 적용한 자료를 입력자료로 사용한 웨이블렛-인공신경망(WANN)과 원자료를 사용한 인공신경망(ANN)을 비교하였다. 산정결과 결정계수와 선형회귀를 통한 기울기는 WANN이 ANN보다 각각 0.032, 0.0115 더 큰 값을 나타냈고, 타겟값과 예측값 사이의 오차를 나타내는 RMSE와 RRMSE는 WANN 모형이 ANN 보다 각각 37.388, 0.099 더 작은 값을 나타냈다. 따라서 본 연구에서 적용한 WANN 모형이 ANN 보다 정확한 결과를 나타내었으며, 웨이블렛 변환을 통한 디노이징 기법의 적용이 잡음이 포함되어 있는 원자료의 사용보다 더 정확한 예측을 하는 것으로 판단된다.

    영어초록

    In this study, the daily inflow at the basin of Chungju dam is predicted using wavelet-artificial neural network for nonlinear model. Time series generally consists of a linear combination of trend, periodicity and stochastic component. However, when framing time series model through these data, trend and periodicity component have to be removed. Wavelet transform which is denoising technique is applied to remove nonlinear dynamic noise such as trend and periodicity included in hydrometeorological data and simple noise that arises in the measurement process. The wavelet-artificial neural network(WANN) using data applied wavelet transform as input variable and the artificial neural network(ANN) using only raw data are compared. As a results, coefficient of determination and the slope through linear regression show that WANN is higher than ANN by 0.031 and 0.0115 respectively. And RMSE and RRMSE of WANN are smaller than those of ANN by 37.388 and 0.099 respectively. Therefore, WANN model applied in this study shows more accurate results than ANN and application of denoising technique through wavelet transforms is expected that more accurate predictions than the use of raw data with noise.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국수자원학회 논문집”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 19일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:35 오후