• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

시계열 데이터와 랜덤 포레스트를 활용한 시간당 초미세먼지 농도 예측 (Hourly Prediction of Particulate Matter (PM2.5) Concentration Using Time Series Data and Random Forest)

8 페이지
기타파일
최초등록일 2025.04.10 최종저작일 2020.04
8P 미리보기
시계열 데이터와 랜덤 포레스트를 활용한 시간당 초미세먼지 농도 예측
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회 논문지 / 9권 / 4호 / 129 ~ 136페이지
    · 저자명 : 이득우, 이수원

    초록

    최근 환경 문제에서 중요한 화두로 떠오른 초미세먼지(PM2.5)는 미세먼지(PM10)보다도 작은 부유물질이다. PM2.5는 안구나 호흡기 질환을 일으키며 뇌혈관에까지 침투할 수 있어서 시간별로 수치를 예측하여 대비하는 것이 중요하다. 그러나 PM2.5의 생성과 이동에 관한 명확한 설명이 아직까지는 제시되지 않고 있어서 예측에 어려움이 따른다. 따라서 PM2.5 예측뿐만 아니라 예측 결과에 대한 설명력을 갖는 예측 방법이 제시될 필요가 있다. 본 연구에서는 서울시의 시간당 PM2.5를 예측하고자 하며, 이를 위해 각기 다른 지상관측 데이터를 시계열로 전처리하고 부트스트랩 수를 조정한 랜덤 포레스트(Random Forest)를 데이터 학습 및 예측에 사용하는 방법을 제안한다. 이 방법은 예측 모델이 입력 데이터의 시각별 정보를 균형 있게 학습하게 하며 예측 결과에 대한 설명이 가능하다는 장점을 갖는다. 예측 정확도 평가를 위해 기존 모델과의 비교실험을 수행한 결과 제안 방법은 모든 레이블에서 가장 뛰어난 예측 성능을 보였으며, PM2.5의 생성과 관련된 변수와 중국의 영향과 관련된 변수가 예측 결과에 중요한 영향을 미치는 것을 보여주었다.

    영어초록

    PM2.5 which is a very tiny air particulate matter even smaller than PM10 has been issued in the environmental problem. Since PM2.5 can cause eye diseases or respiratory problems and infiltrate even deep blood vessels in the brain, it is important to predict PM2.5. However, it is difficult to predict PM2.5 because there is no clear explanation yet regarding the creation and the movement of PM2.5. Thus, prediction methods which not only predict PM2.5 accurately but also have the interpretability of the result are needed. To predict hourly PM2.5 of Seoul city, we propose a method using random forest with the adjusted bootstrap number from the time series ground data preprocessed on different sources. With this method, the prediction model can be trained uniformly on hourly information and the result has the interpretability. To evaluate the prediction performance, we conducted comparative experiments. As a result, the performance of the proposed method was superior against other models in all labels. Also, the proposed method showed the importance of the variables regarding the creation of PM2.5 and the effect of China.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 03일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:50 오전