• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

데이터 분포특성을 이용한 다목적함수 최적화 알고리즘 개발 (Development of a Multiobjective Optimization Algorithm Using Data Distribution Characteristics)

11 페이지
기타파일
최초등록일 2025.04.08 최종저작일 2010.12
11P 미리보기
데이터 분포특성을 이용한 다목적함수 최적화 알고리즘 개발
  • 미리보기

    서지정보

    · 발행기관 : 대한기계학회
    · 수록지 정보 : 대한기계학회논문집 A / 34권 / 12호 / 1793 ~ 1803페이지
    · 저자명 : 황인진, 박경진

    초록

    가중치법이나 목표계획법을 이용하여 다목적함수 최적화를 수행할 때 설계자는 각 함수에 적절한 가중치나 목표값을 설정해 주어야 한다. 하지만 파라미터를 잘못 설정하게 되면 파레토 최적해를 얻지 못하기 때문에 이는 설계자에게 큰 부담이 된다. 최근에 데이터의 분포특성만을 이용하여 데이터의 평균과 함수 사이의 거리를 표현하는 마하라노비스 거리(MD)를 최소화하는 MTS기법이 개발되었다. 이방법은 파라미터를 설정하지 않아도 되는 장점이 있지만 최적해가 참고데이터의 평균으로 수렴하는 단점이 있다. 따라서 본 연구에서는 방향성이 없는 기존의 MD에 방향성을 부여한 새로운 거리 척도인 SMD를 제안하였다. 그리고 SMD법이 계산과정에서 각 함수의 가중치를 자동으로 반영하고 평균에서 가장 멀리 위치한 한 점을 항상 파레토 최적해로 제공한다는 것을 2개의 단순예제를 통해 검증하였다.

    영어초록

    The weighting method and goal programming require weighting factors or target values to obtain a Pareto optimal solution. However, it is difficult to define these parameters, and a Pareto solution is not guaranteed when the choice of the parameters is incorrect. Recently, the Mahalanobis Taguchi System (MTS) has been introduced to minimize the Mahalanobis distance (MD). However, the MTS method cannot obtain a Pareto optimal solution. We propose a function called the skewed Mahalanobis distance(SMD) to obtain a Pareto optimal solution while retaining the advantages of the MD. The SMD is a new distance scale that multiplies the skewed value of a design point by the MD. The weighting factors are automatically reflected when the SMD is calculated. The SMD always gives a unique Pareto optimal solution. To verify the efficiency of the SMD, we present two numerical examples and show that the SMD can obtain a unique Pareto optimal solution without any additional information.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“대한기계학회논문집 A”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
8:37 오전