• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

대용량 데이터베이스에서 다차원 인덱스를 사용한 효율적인 다단계 k-NN 검색 (Efficient Multi-Step k-NN Search Methods Using Multidimensional Indexes in Large Databases)

13 페이지
기타파일
최초등록일 2025.04.08 최종저작일 2015.02
13P 미리보기
대용량 데이터베이스에서 다차원 인덱스를 사용한 효율적인 다단계 k-NN 검색
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 / 42권 / 2호 / 242 ~ 254페이지
    · 저자명 : 이상훈, 김범수, 최미정, 문양세

    초록

    본 논문에서는 다차원 인덱스 기반 다단계 k-NN 검색의 성능 향상 문제를 다룬다. 기존 다단계 k-NN 검색에서는 고차원 객체의 저차원 변환으로 인한 정보 손실로 k-NN 질의 결과 매우 큰 허용치(검색 범위)가 결정되어 범위 질의 결과로 많은 후보가 검색된다. 또한, 많은 후보는 후처리 과정에서 매우 많은 I/O 및 CPU 오버헤드를 발생시킨다. 본 논문에서는 이와 같은 고찰에 기반하여 범위 질의의 허용치를 줄여 후보 개수를 줄이고 이를 통해 성능을 향상시키는 방법을 제안한다. 먼저, k-NN 질의 결과로 결정된 허용치를 고차원 및 저차원 객체간 거리 비율로 강제 축소하여 범위 질의에 사용하는 허용치축소 (근사적) 해결책을 제안한다. 다음으로, k-NN 질의 계수 k 대신 c・k 를 사용하여 얻은 보다 타이트(tight)한 허용치로 범위 질의를 수행하는 계수 제어 (정확한) 해결책을 제안한다. 실제 객체 데이터를 사용하여 실험한 결과, 제안한 두 가지 해결책은 기존 다단계 k-NN 검색에 비해 후보 개수와 검색 시간 모두를 크게 향상시킨 것으로 나타났다.

    영어초록

    In this paper, we address the problem of improving the performance of multi-step k-NN search using multi-dimensional indexes. Due to information loss by lower-dimensional transformations, existing multi-step k-NN search solutions produce a large tolerance (i.e., a large search range), and thus, incur a large number of candidates, which are retrieved by a range query. Those many candidates lead to overwhelming I/O and CPU overheads in the postprocessing step. To overcome this problem, we propose two efficient solutions that improve the search performance by reducing the tolerance of a range query, and accordingly, reducing the number of candidates. First, we propose a tolerance reduction-based (approximate) solution that forcibly decreases the tolerance, which is determined by a k-NN query on the index, by the average ratio of high- and low-dimensional distances. Second, we propose a coefficient control-based (exact) solution that uses c・k instead of k in a k-NN query to obtain a tigher tolerance and performs a range query using this tigher tolerance. Experimental results show that the proposed solutions significantly reduce the number of candidates, and accordingly, improve the search performance in comparison with the existing multi-step k-NN solution.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 29일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:06 오전