• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

데이터 증강 기반의 효율적인 포이즈닝 공격 방어 기법 (Efficient Poisoning Attack Defense Techniques Based on Data Augmentation)

8 페이지
기타파일
최초등록일 2025.04.08 최종저작일 2022.09
8P 미리보기
데이터 증강 기반의 효율적인 포이즈닝 공격 방어 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국융합보안학회
    · 수록지 정보 : 융합보안 논문지 / 22권 / 3호 / 25 ~ 32페이지
    · 저자명 : 전소은, 옥지원, 김민정, 홍사라, 박새롬, 이일구

    초록

    최근 이미지 인식 및 탐지 분야에 딥러닝 기반의 기술이 도입되면서 영상 처리 산업이 활성화되고 있다. 딥러닝 기술의 발전과 함께 적대적 공격에 대한 학습 모델 취약점이 계속해서 보고되고 있지만, 학습 시점에 악의적인 데이터를 주입하는 포이즈닝 공격의 대응 방안에 대한 연구가 미흡한 실정이다. 종래 포이즈닝 공격의 대응 방안은 매번 학습 데이터를 검사하여 별도의 탐지 및 제거 작업을 수행해야 한다는 한계가 있었다. 따라서, 본 논문에서는 포이즌 데이터에 대해 별도의 탐지 및 제거 과정 없이 학습 데이터와 추론 데이터에 약간의 변형을 가함으로써 공격 성공률을 저하시키는 기법을 제안한다. 선행연구에서 제안된 클린 라벨 포이즌 공격인 원샷킬 포이즌 공격을 공격 모델로 활용하였고, 공격자의 공격 전략에 따라 일반 공격자와 지능형 공격자로 나누어 공격 성능을 확인하였다. 실험 결과에 따르면 제안하는 방어 메커니즘을 적용하면 종래 방법 대비 최대 65%의 공격 성공률을 저하시킬 수 있었다.

    영어초록

    Recently, the image processing industry has been activated as deep learning-based technology is introduced in the image recognition and detection field. With the development of deep learning technology, learning model vulnerabilities for adversarial attacks continue to be reported. However, studies on countermeasures against poisoning attacks that inject malicious data during learning are insufficient. The conventional countermeasure against poisoning attacks has a limitation in that it is necessary to perform a separate detection and removal operation by examining the training data each time. Therefore, in this paper, we propose a technique for reducing the attack success rate by applying modifications to the training data and inference data without a separate detection and removal process for the poison data. The One-shot kill poison attack, a clean label poison attack proposed in previous studies, was used as an attack model. The attack performance was confirmed by dividing it into a general attacker and an intelligent attacker according to the attacker's attack strategy. According to the experimental results, when the proposed defense mechanism is applied, the attack success rate can be reduced by up to 65% compared to the conventional method.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“융합보안 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 24일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:59 오전