• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

초음파 영상에서의 초고분해능 합성곱 신경망 알고리즘의 시뮬레이션 및 실험 연구 (Simulation and Experimental Studies of Super Resolution Convolutional Neural Network Algorithm in Ultrasound Image)

7 페이지
기타파일
최초등록일 2025.04.07 최종저작일 2023.10
7P 미리보기
초음파 영상에서의 초고분해능 합성곱 신경망 알고리즘의 시뮬레이션 및 실험 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국방사선학회
    · 수록지 정보 : 한국방사선학회논문지 / 17권 / 5호 / 693 ~ 699페이지
    · 저자명 : 이영진

    초록

    초음파는 의료분야에서 비파괴적 및 비침습적인 질병 진단에 널리 활용되고 있다. 진단의료영상의 질병 진단 정확도를 향상시키기 위하여 공간 분해능을 향상시키는 것은 매우 중요하다. 본 연구에서는 초음파 영상에서의 초고분해능 합성곱 신경망 알고리즘 (super resolution convolutional neural network, SRCNN)을 모델링하여 적용 가능성을 분석하고자 한다. 연구는 FieldⅡ 시뮬레이션과 open source로 제공되는 임상 간 혈관종 초음파 영상을 사용한 실험 연구로 수행되었다. 제안하는 SRCNN 알고리즘은 저분해능 (low resolution, LR)에서 고분해능 (high resolution)으로 end-to-end 방식의 학습이 적용될 수 있도록 모델링하였다. 시뮬레이션 결과 FieldⅡ 프로그램을 통한 팬텀 영상에서의 반치폭 값은 SRCNN을 사용하였을 때 LR에 비하여 41.01% 향상되는 것을 확인하였다. 또한, 최대신호대잡음비 (peak to signal to noise ratio, PSNR)와 구조적 유사도 지표 (structural similarity index, SSIM)) 평가 결과는 시뮬레이션과 실제 간 혈관종 영상에서 SRCNN이 가장 우수한 값으로 도출되었다. 결론적으로 SRCNN의 초음파 영상에서의 적용 가능성을 증명하였고, 나아가 다양한 진단의료분야에서의 사용이 가능할 것으로 기대한다.

    영어초록

    Ultrasound is widely used in the medical field for non-destructive and non-invasive disease diagnosis. In order to improve the disease diagnosis accuracy of diagnostic medical images, improving spatial resolution is a very important factor. In this study, we aim to model the super resolution convolutional neural network (SRCNN) algorithm in ultrasound images and analyze its applicability in the medical diagnostic field. The study was conducted as an experimental study using FieldⅡsimulation and open source clinical liver hemangioma ultrasound imaging. The proposed SRCNN algorithm was modeled so that end-to-end learning can be applied from low resolution (LR) to high resolution. As a result of the simulation, we confirmed that the full width at half maximum in the phantom image using a FieldⅡ program was improved by 41.01% compared to LR when SRCNN was used. In addition, the peak to signal to noise ratio (PSNR) and structural similarity index (SSIM) evaluation results showed that SRCNN had the excellent value in both simulated and real liver hemangioma ultrasound images. In conclusion, the applicability of SRCNN to ultrasound images has been proven, and we expected that proposed algorithm can be used in various diagnostic medical fields.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국방사선학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:01 오후