PARTNER
검증된 파트너 제휴사 자료

대칭성 분석과 레벨셋을 이용한 자기공명 뇌영상의 자동 종양 영역 분할 방법 (Automatic Tumor Segmentation Method using Symmetry Analysis and Level Set Algorithm in MR Brain Image)

7 페이지
기타파일
최초등록일 2025.04.01 최종저작일 2011.10
7P 미리보기
대칭성 분석과 레벨셋을 이용한 자기공명 뇌영상의 자동 종양 영역 분할 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국융합신호처리학회
    · 수록지 정보 : 융합신호처리학회 논문지 / 12권 / 4호 / 267 ~ 273페이지
    · 저자명 : 김보람, 박근혜, 김욱현

    초록

    본 논문은 자기공명 뇌영상을 대상으로 뇌종양 영역을 자동으로 분할하기 위한 방법을 제안한다. 정상적인 뇌영상은 좌우로 대칭인 특징을 지니는 반면에 종양이 존재하는 뇌영상은 종양세포와 부종 및 괴사로 인해 비대칭적인 특징을 가진다. 본 논문에서는 이러한 대칭성을 뇌영상내에 종양영역의 존재 유무를 판별할 수 있는 기준으로 이용한다. 대칭성 분석을 위해서 뇌영역의 윤곽선 정보를 이용해 중심축을 생성하였으며 이는 사전정보를 이용하지 않고 영상의 자체 정보만을 해석해서 중심축을 추출할 수 있다는 점에서 기존의 영상 정합을 통해 해부학적 위치 정보를 추출하고 이를 이용하여 중심축을 찾는 방법과 구별된다. 자기공명 영상에서 정상뇌의 조직은 크게 3가지 클러스터로 분할되며 각 클러스터가 포함하는 영역은 백질과 회백질영역을 포함하는 뇌 실질영역, 뇌척수액(csf)영역, 두개골, 지방 및 뇌막 영역 등으로 나뉜다. 종양이 포함된 영상은 종양과 부종 및 괴사 영역이 추가적으로 존재하며 이는 클러스터링을 이용한 분할을 통해서 구분될 수 있다. 분할된 종양 영역의 중심점은 다음 슬라이스의 종양 영역의 경계를 검출하기 위한 레벨셋 알고리즘에 적용되어 전체 볼륨의 종양 영역의 경계선을 추출하기 위한 초기 시드로 이용된다. 본 논문에서는 3차원 볼륨의 영상(슬라이스)중에서 종양 영역이 존재하는 슬라이스의 종양 영역을 분할하여 이후의 슬라이스에서는 분할작업을 수행하지 않고 영역의 경계선만 추출한다. 자카드 지수와 처리 시간의 비교 분석을 통해 기존의 방법과 비슷한 성능과 빠른 속도로 종양 영역을 분할할 수 있다는 것을 보인다.

    영어초록

    In this paper, we proposed the method to detect brain tumor region in MR images. Our method is composed of 3 parts, detection of tumor slice, detection of tumor region and tumor boundary detection. In the tumor slice detection step, a slice which contains tumor regions is distinguished using symmetric analysis in 3D brain volume. The tumor region detection step is the process to segment the tumor region in the slice distinguished as a tumor slice. And tumor region is finally detected, using spatial feature and symmetric analysis based on the cluster information. The process for detecting tumor slice and tumor region have advantages which are robust for noise and requires less computational time, using the knowledge of the brain tumor and cluster-based on symmetric analysis. And we use the level set method with fast marching algorithm to detect the tumor boundary. It is performed to find the tumor boundary for all other slices using the initial seeds derived from the previous or later slice until the tumor region is vanished. It requires less computational time because every procedure is not performed for all slices.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“융합신호처리학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 06월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:56 오전