• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

뇌파기반 정신적 피로 판별을 위한 딥러닝 모델 (Deep Learning Model for Mental Fatigue Discrimination System based on EEG)

7 페이지
기타파일
최초등록일 2025.03.31 최종저작일 2021.10
7P 미리보기
뇌파기반 정신적 피로 판별을 위한 딥러닝 모델
  • 미리보기

    서지정보

    · 발행기관 : 한국디지털정책학회
    · 수록지 정보 : 디지털융복합연구 / 19권 / 10호 / 295 ~ 301페이지
    · 저자명 : 서쌍희

    초록

    개인의 정신적 피로는 인지능력 및 업무 수행능력을 감소시킬 뿐만 아니라 일상에서 발생하는 크고 작은 사고의 주요 요인이 된다. 본 논문에서는 EEG 기반의 정신적 피로 판별을 위한 CNN 모델을 제안하였다. 이를 위해 안정 상태와 작업 상태에서의 뇌파를 수집하여 제안한 CNN 모델에 적용한 후 모델 성능을 분석하였다. 실험에 참여한 피험자들은 모두 대학교에 재학 중인 오른손잡이 남학생들이며 평균 나이는 25.5세이다. 각 상태에서의 측정된 뇌파에 대해 스펙트럼분석을 수행하였으며, CNN 모델의 입력데이터로써 원시 EEG 신호, 절대파워, 상대파워를 사용하여 CNN모델의 성능을 비교 분석하였다. 그 결과, 알파대역 후두엽 위치의 상대파워가 가장 좋은 성능을 나타내었다. 모델정확도는 훈련데이터 85.6%, 검증데이터 78.5%, 시험데이터 95.7%이다. 제안한 모델은 정신적 피로 판별을 위한 자동화시스템 개발에 적용될 수 있다.

    영어초록

    Individual mental fatigue not only reduces cognitive ability and work performance, but also becomes a major factor in large and small accidents occurring in daily life. In this paper, a CNN model for EEG-based mental fatigue discrimination was proposed. To this end, EEG in the resting state and task state were collected and applied to the proposed CNN model, and then the model performance was analyzed. All subjects who participated in the experiment were right-handed male students attending university, with and average age of 25.5 years. Spectral analysis was performed on the measured EEG in each state, and the performance of the CNN model was compared and analyzed using the raw EEG, absolute power, and relative power as input data of the CNN model. As a result, the relative power of the occipital lobe position in the alpha band showed the best performance. The model accuracy is 85.6% for training data, 78.5% for validation, and 95.7% for test data. The proposed model can be applied to the development of an automated system for mental fatigue detection.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“디지털융복합연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 전문가 요청 쿠폰 이벤트
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 04일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:30 오전