• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

계층적 매칭 기법을 이용한 수치지도 건물 폴리곤 데이터의 자동 정합에 관한 연구 (Automatic Matching of Building Polygon Dataset from Digital Maps Using Hierarchical Matching Algorithm)

8 페이지
기타파일
최초등록일 2025.03.20 최종저작일 2015.02
8P 미리보기
계층적 매칭 기법을 이용한 수치지도 건물 폴리곤 데이터의 자동 정합에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국측량학회
    · 수록지 정보 : 한국측량학회지 / 33권 / 1호 / 45 ~ 52페이지
    · 저자명 : 염준호, 김용일, 이재빈

    초록

    공간정보 제작의 다원화로 인하여 다양한 수치지도들이 여러 공공기관 및 기업에서 제작됨에 따라 데이터의 상호 운용성이 점점 중요해지고 있다. 이에 본 연구에서는 계층적 매칭 기법을 활용한 이종 수치지도의 건물 데이터 자동 정합기법을 제안하였다. 먼저 수치지도를 가구계 기반으로 분할한 후 ICP 알고리즘을 활용한 건물 기하보정을 1차적으로 수행하였다. 대응 가능한 건물쌍의 중첩면적 유사도를 평가하여 대응 건물을 결정하고 Otsu 이진 임계화를 수행하여 매칭·비매칭에 대한 임계값을 자동으로 설정하였다. 1차 매칭이 완료된 후 임계값과 비슷한 유사도를 가지는 건물들을 오매칭 후보군으로 추출하여 개별 건물에 대한 ICP 알고리즘 기반의 기하보정을 다시 수행하고 형태학적 인자인 회전각 함수분석을 추가 적용하여 정합여부를 재판단하였다. 실험평가를 위해 제안된 알고리즘을 대표적인 공공분야 수치지도인 도로명주소지도와 수치지형도 2.0의 건물 데이터에 적용하고 활용성을 평가하였다. 정확도 평가결과 매칭 건물 및 비매칭 건물에 대한 F 측정치가 각각 2%와 17% 향상되었으며 이를 통해 본 연구에서 제안한 알고리즘이 이종 수치지도 건물 정합에 효과적으로 적용될 수 있음을 확인하였다.

    영어초록

    The interoperability of multi-source data has become more important due to various digital maps, produced from public institutions and enterprises. In this study, the automatic matching algorithm of multi-source building data using hierarchical matching was proposed. At first, we divide digital maps into blocks and perform the primary geometric registration of buildings with the ICP algorithm. Then, corresponding building pairs were determined by evaluating the similarity of overlap area, and the matching threshold value of similarity was automatically derived by the Otsu binary thresholding. After the first matching, we extracted error matching candidates buildings which are similar with threshold value to conduct the secondary ICP matching and to make a matching decision using turning angle function analysis. For the evaluation, the proposed method was applied to representative public digital maps, road name address map and digital topographic map 2.0. As a result, the F measures of matching and non-matching buildings increased by 2% and 17%, respectively. Therefore, the proposed method is efficient for the matching of building polygons from multi-source digital maps.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국측량학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 03일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
10:54 오후