• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

머신러닝을 이용한 탄성파 반사법 자료의 해저면 겹반사 제거 (Removal of Seabed Multiples in Seismic Reflection Data using Machine Learning)

10 페이지
기타파일
최초등록일 2025.03.17 최종저작일 2020.08
10P 미리보기
머신러닝을 이용한 탄성파 반사법 자료의 해저면 겹반사 제거
  • 미리보기

    서지정보

    · 발행기관 : 한국지구물리.물리탐사학회
    · 수록지 정보 : 지구물리와 물리탐사 / 23권 / 3호 / 168 ~ 177페이지
    · 저자명 : 남호수, 임보성, 권일룡, 김지수

    초록

    해저면 탄성파 겹반사는 발파점 모음자료와 겹쌓기 단면에서 모두 일차 반사파의 해석에 잘못된 결과를 초래할수 있다. 따라서, 해저면 겹반사는 자료처리를 통해 제거해야 한다. 전통적인 자료처리 과정에서 겹반사 제거는 예측오차곱풀기와 라돈 필터링 등과 같은 모델-기반 기법과 지표관련-겹반사제거와 같은 데이터-기반 기법에 의해 이루어져 왔다. 그러나 대다수의 자료처리 과정들은 방대한 컴퓨터 자원과 전문적인 자료처리 기법뿐만 아니라 자료처리 변수들을 테스트하고 선택하는데 많은 시간을 필요로 한다. 이 논문에서는 머신러닝 시스템을 활용한 해저면 겹반사의 제거효과를 살펴보기 위해 Marmousi2 속도모델에 대한 수치모델링으로 겹반사가 포함된 입력데이터와 겹반사가 포함되지 않은 레이블데이터를 생성하였다. 수직시간차가 보정된 공통중간점 모음자료로 훈련데이터를 구성하였으며 인공신경망은 U-Net 모델을적용하였다. 해저면 겹반사를 제거하기 위해 훈련된 모델은 레이블데이터에 거의 근접하는 예측 결과를 만들어내며, 현장자료에 대한 예측 테스트에서 해저면 겹반사를 효과적으로 제거하는 것으로 나타났다.

    영어초록

    Seabed multiple reflections (seabed multiples) are the main cause of misinterpretations of primary reflections in both shot gathers and stack sections. Accordingly, seabed multiples need to be suppressed throughout data processing.
    Conventional model-driven methods, such as prediction-error deconvolution, Radon filtering, and data-driven methods, such as the surface-related multiple elimination technique, have been used to attenuate multiple reflections. However, the vast majority of processing workflows require time-consuming steps when testing and selecting the processing parameters in addition to computational power and skilled data-processing techniques. To attenuate seabed multiples in seismic reflection data, input gathers with seabed multiples and label gathers without seabed multiples were generated via numerical modeling using the Marmousi2 velocity structure. The training data consisted of normal-moveout-corrected common midpoint gathers fed into a U-Net neural network. The well-trained model was found to effectively attenuate the seabed multiples according to the image similarity between the prediction result and the target data, and demonstrated good applicability to field data.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지구물리와 물리탐사”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 24일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:17 오전