• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

오차분포거리의 반복적 계산에 의한 결정궤환 알고리듬 (Decision Feedback Algorithms using Recursive Estimation of Error Distribution Distance)

6 페이지
기타파일
최초등록일 2025.03.17 최종저작일 2015.05
6P 미리보기
오차분포거리의 반복적 계산에 의한 결정궤환 알고리듬
  • 미리보기

    서지정보

    · 발행기관 : 한국산학기술학회
    · 수록지 정보 : 한국산학기술학회논문지 / 16권 / 5호 / 3434 ~ 3439페이지
    · 저자명 : 김남용

    초록

    정보이론적 학습의 한 성능기준인 두 오차확률분포간 유클리드거리(MEDE)는 비선형 (결정 궤환, DF) 등화 알고리듬에 채택되었고 심각한 채널 왜곡과 충격성 잡음이 있는 환경에서 탁월한 성능을 보였다. 그러나 이 MEDE-DF 알고리듬은 과중한 계산 복잡성이라는 문제를 지니고 있다. 이 논문에서는 MEDE-DF 알고리듬을 위한 반복적 ED를 먼저 유도하고 그 다음 전후방 영역에 대해 가중치 기울기를 반복적으로 추정하는 식을 유도하였다. MEDE-DF 알고리듬의 반복적 기울기 추정방식의 효과를 입증하기위해 곱셈 계산량을 비교하였고 충격성 잡음과 수중 통신 환경에서 모의 실험한 MSE 성능 결과를 비교하였다. 제안한 DF 방식과 기존의 MEDE-DF 알고리듬의 곱셈 계산량 비는 샘플사이즈 에 대해 :로 나타나면서도 충격성 잡음과 수중통신 채널환경에서 동일한 MSE 학습 성능을 유지하였다.

    영어초록

    As a criterion of information theoretic learning, the Euclidean distance (ED) of two error probability distribution functions (minimum ED of error, MEDE) has been adopted in nonlinear (decision feedback, DF) supervised equalizer algorithms and has shown significantly improved performance in severe channel distortion and impulsive noise environments. However, the MEDE-DF algorithm has the problem of heavy computational complexity. In this paper, the recursive ED for MEDE-DF algorithm is derived first, and then the feed-forward and feedback section gradients for weight update are estimated recursively. To prove the effectiveness of the recursive gradient estimation for the MEDE-DF algorithm, the number of multiplications are compared and MSE performance in impulsive noise and underwater communication environments is compared through computer simulation. The ratio of the number of multiplications between the proposed DF and the conventional MEDE-DF algorithm is revealed to be : for the sample size with the same MSE learning performance in the impulsive noise and underwater channel environment.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산학기술학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 12월 28일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:30 오전