• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

공공자전거 임대내역 데이터를 활용한 마이크로 모빌리티 패턴분석 연구 (A Study on Micro-Mobility Pattern Analysis using Public Bicycle Rental History Data)

13 페이지
기타파일
최초등록일 2025.03.15 최종저작일 2021.12
13P 미리보기
공공자전거 임대내역 데이터를 활용한 마이크로 모빌리티 패턴분석 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국IT서비스학회
    · 수록지 정보 : 한국IT서비스학회지 / 20권 / 6호 / 83 ~ 95페이지
    · 저자명 : 조재희, 백가은

    초록

    In this study, various usage patterns were analyzed after establishing a data mart for micro mobility analysis based on the rental history of public bicycles in Seoul. Rental history data is origin-destination data that includes the rental location and time, and the return location and time. About 1500 rental locations were classified according to the characteristics of the location to create a ‘station type’ dimension. We also created a ‘path type’ dimension that displays whether the rental location and return location are the same. In addition, a derived variable called speed, which is obtained by dividing the distance used by the time used, is added, and through this, the characteristics of the riding area and the reason for the rental can be estimated. Meanwhile, administrative district link, administrative neighborhood link, and station type link were created to apply network analysis. Through this analysis, the roles and proportions of administrative districts, public facilities, and private facilities engaged in micro-mobility services were visualized. 49.9% of rentals occur at rental offices near transportation facilities, and half of them occur at rental offices near subway stations. The number of rentals during the evening rush hour is more than double that of the morning rush hour. When the path type is unidirectional, there is a fixed destination, so the distance and time used are short, and the movement speed tends to be high. In the case of round-trip, the purpose of use is exercise or leisure, so the distance and time used are long, and the movement speed is slow. It is expected that the results of the analysis can be used as reference materials for selecting new rental locations, providing convenient services for users, and developing user-specialized products.

    영어초록

    In this study, various usage patterns were analyzed after establishing a data mart for micro mobility analysis based on the rental history of public bicycles in Seoul. Rental history data is origin-destination data that includes the rental location and time, and the return location and time. About 1500 rental locations were classified according to the characteristics of the location to create a ‘station type’ dimension. We also created a ‘path type’ dimension that displays whether the rental location and return location are the same. In addition, a derived variable called speed, which is obtained by dividing the distance used by the time used, is added, and through this, the characteristics of the riding area and the reason for the rental can be estimated. Meanwhile, administrative district link, administrative neighborhood link, and station type link were created to apply network analysis. Through this analysis, the roles and proportions of administrative districts, public facilities, and private facilities engaged in micro-mobility services were visualized. 49.9% of rentals occur at rental offices near transportation facilities, and half of them occur at rental offices near subway stations. The number of rentals during the evening rush hour is more than double that of the morning rush hour. When the path type is unidirectional, there is a fixed destination, so the distance and time used are short, and the movement speed tends to be high. In the case of round-trip, the purpose of use is exercise or leisure, so the distance and time used are long, and the movement speed is slow. It is expected that the results of the analysis can be used as reference materials for selecting new rental locations, providing convenient services for users, and developing user-specialized products.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국IT서비스학회지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 24일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:33 오전