PARTNER
검증된 파트너 제휴사 자료

경험적 모델과 머신러닝 기법을 활용한 SNS 사용자 분류방법 비교: 플리커 데이터의 관광객 분류방법 (Comparison of Tourists Classification Methods of Geotagged Photos: Empirical Models and Machine Learning Approaches)

9 페이지
기타파일
최초등록일 2025.03.15 최종저작일 2019.07
9P 미리보기
경험적 모델과 머신러닝 기법을 활용한 SNS 사용자 분류방법 비교: 플리커 데이터의 관광객 분류방법
  • 미리보기

    서지정보

    · 발행기관 : 대한공간정보학회
    · 수록지 정보 : 대한공간정보학회지 / 27권 / 4호 / 29 ~ 37페이지
    · 저자명 : 강영옥, 조나혜, 이주윤, 윤지영, 이혜진

    초록

    플리커는 위치, 시간, 사진 등의 정보를 포함하고 있어 관광 분야에서 활용이 높은 SNS 가운데 하나이다. 플리커 데이터를 활용하여 관광객의 특성을 분석하기 위해서는 플리커에 사진을 업로드한 사용자 가운데 관광객을 구분하는 것이 필수적이다. 실제 플리커의 메타데이타에는 사용자의 거주지 정보를 기재하게 되어 있지만 정확하게 기재한 사용자의 비율은 40% 미만이다. 본 연구는 플리커 사용자 가운데 관광객과 거주자를 구분하기 위해 경험적 모델과 기계학습 방법을 적용하고, 정확도를 평가하여 어떠한 방법을 사용할지 제안하고자 하였다. 경험적 방법에는 시간적 임계치, 최다 사진 촬영 국가, 최장 체류 국가, 최다 방문 국가를 기준으로 거주국을 추정하는 4가지 방법을, 기계학습 방법에는 로지스틱 회귀, 서포트벡터머신, 의사결정나무, 랜덤포레스트, 인공신경망 모델의 5가지 방법을 적용하였다. 적용 결과 경험적 방법에서는 최장 체류 국가를 기준으로 거주국을 추정하는 방법이, 기계학습 방법에서는 랜덤포레스트 방법이 가장 정확도가 높게 도출되었다. 그러나 관광객 구분에 있어서 정확도뿐 아니라 특이도도 주의 깊게 고려해야 할 항목임을 알 수 있었으며, 연구 목적에 따라 다른 방법이 선택될 수 있음을 제안하였다.

    영어초록

    Flickr is one of the most utilized SNS in the field of tourism because it contains information such as location, time, and photos. In order to analyze the characteristics of tourists using Flickr data, it is essential to identify the tourists among the users who uploaded the photos to Flickr. Flicker's metadata is supposed to contain the owner’s location information, but the percentage of users accurately stated is less than 40%. The purpose of this study is to suggest a model which accurately distinguish between tourists and residents after experimenting various models. For empirical models, four methods were used to estimate the country of residence based on the time threshold, the highest photo-taking country, the longest-stay country, and the most visited country. Five machine learning methods are applied: logistic regression, support vector machine, decision tree, random forest, and artificial neural network model. As a result, the method of estimating the country of residence based on the longest stay nation in the empirical method and the random forest method in the machine learning method were found to be the most accurate. However, it was found that not only the accuracy but also the specificity should be considered carefully in the tourist category, and suggested that different methods could be selected according to the research purpose.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 05일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:11 오전