• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크: 소셜 네트워크 분석을 중심으로 (The Framework of Research Network and Performance Evaluation on Personal Information Security: Social Network Analysis Perspective)

17 페이지
기타파일
최초등록일 2025.03.14 최종저작일 2014.03
17P 미리보기
개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크: 소셜 네트워크 분석을 중심으로
  • 미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 20권 / 1호 / 177 ~ 193페이지
    · 저자명 : 김민수, 최재원, 김현진

    초록

    개인정보 분야에서의 다양한 정보 보안 이슈가 발생함에 따라 해당 분야의 전문가를 확인하기 위한 프레임워크는 매우 중요한 영역이 되었다. 전문가 탐색과정은 주로 연구 업적 등을 통한 주관적인 평가가 일반적이지만 보다 객관적인 방식을 통한 선정이 매우 중요하다. 소셜 네트워크 분석기법의 응용이 다양한 영역에서 활용됨에 따라 본 연구는 개인정보보호분야의 전문가를 확인하고 해당 전문가들의 연구실적을 판단하기 위한 분석 프레임워크를 제시하고자 하였다. 본 연구는 연구 목적에 따라 개인정보보호 연구영역의 연구성과 자료를 바탕으로 소셜 네트워크 분석을 실시하고 핵심연구자의 성과를 분석하였다. 수집된 데이터는 연구의 공저자, 발행기관, 소속기관 등의 네트워크 구성에 활용되어 핵심전문가 집단을 관리하기 위한 프레임워크를 제시하였다.
    본 연구는 NDSL에서 최근 5년 동안 발표된 논문들을 중심으로 자료를 수집하였다. 연구자들이 학술 정보를 교환하는 정기 간행물인 학술지를 바탕으로 연구 네트워크를 형성하는 네트워크 자료를 수집함으로써 연구활동에 대한 정보를 분석할 수 있었다. 일반적으로 연구자들은 연구 결과를 논문으로 발표하고, 발표된 논문들이 다수의 관련 분야 전문가들에게 공유된다는 점에서 학술연구지는 연구자들의 지식관련 의사소통 공간이며 지식의 구조화에 핵심적인 역할을 수행한다.
    그에 따라 본 연구의 연구 대상 분야로 설정한 개인정보보호 분야의 연구 구조를 이해하기 위해 국내에서 발표된 관련 분야의 논문들을 연구 대상으로 자료가 수집되었다. 특히 자료의 선별 기준은 국내 최대의 데이터베이스를 보유하고 있는 NDSL에서 개인정보보호 관련 키워드를 보유한 논문 데이터를 수집 및 정제하여 분석 자료로 사용하였다. 2005년부터 2013년까지 약 2,000개의 연구결과 중 주제 관련성, 공저자 추출 등을 수집하였다. 데이터 수집 이후 연구 분석을 위한 데이터 처리를 통하여 통해 총 784개의 논문을 선정하고 분석대상으로 확정하였다.
    분석 결과, 개인정보보호 연구영역의 전문가 집단을 이용한 연구논문 성과에 대한 분석은 핵심 연구자들을 추출해내고 전문가 집단을 관리하는 데 도움을 제공할 수 있다. 특히 소속집단 및 연구논문 발행기관을 분석함으로써 개인정보보호 연구영역에서 확인되지 않았던 연구자들의 연구 논문 게재의 공저자 네트워크가 매우 밀접함을 확인할 수 있다. 또한 연구논문의 발행기관 및 소속집단의 특성을 추출함으로써 개인정보보호 영역의 전문가 평가지표로서 소셜 네트워크 지표들의 활용가능성을 확인하였다.

    영어초록

    Over the past decade, there has been a rapid diffusion of electronic commerce and a rising number of interconnected networks, resulting in an escalation of security threats and privacy concerns. Electronic commerce has a built-in trade-off between the necessity of providing at least some personal information to consummate an online transaction, and the risk of negative consequences from providing such information. More recently, the frequent disclosure of private information has raised concerns about privacy and its impacts. This has motivated researchers in various fields to explore information privacy issues to address these concerns. Accordingly, the necessity for information privacy policies and technologies for collecting and storing data, and information privacy research in various fields such as medicine, computer science, business, and statistics has increased.
    The occurrence of various information security accidents have made finding experts in the information security field an important issue. Objective measures for finding such experts are required, as it is currently rather subjective. Based on social network analysis, this paper focused on a framework to evaluate the process of finding experts in the information security field.
    We collected data from the National Discovery for Science Leaders (NDSL) database, initially collecting about 2000 papers covering the period between 2005 and 2013. Outliers and the data of irrelevant papers were dropped, leaving 784 papers to test the suggested hypotheses. The co-authorship network data for co-author relationship, publisher, affiliation, and so on were analyzed using social network measures including centrality and structural hole.
    The results of our model estimation are as follows. With the exception of Hypothesis 3, which deals with the relationship between eigenvector centrality and performance, all of our hypotheses were supported. In line with our hypothesis, degree centrality (H1) was supported with its positive influence on the researchers’ publishing performance (p<0.001). This finding indicates that as the degree of cooperation increased, the more the publishing performance of researchers increased. In addition, closeness centrality (H2) was also positively associated with researchers’ publishing performance (p<0.001), suggesting that, as the efficiency of information acquisition increased, the more the researchers’ publishing performance increased.
    This paper identified the difference in publishing performance among researchers. The analysis can be used to identify core experts and evaluate their performance in the information privacy research field. The co-authorship network for information privacy can aid inunderstanding the deep relationships among researchers. In addition, extracting characteristics of publishers and affiliations, this paper suggested an understanding of the social network measures and their potential for finding experts in the information privacy field. Social concerns about securing the objectivity of experts have increased, because experts in the information privacy field frequently participate in political consultation, and business education support and evaluation. In terms of practical implications, this research suggests an objective framework for experts in the information privacy field, and is useful for people who are in charge of managing research human resources.
    This study has some limitations, providing opportunities and suggestions for future research. Presenting the difference in information diffusion according to media and proximity presents difficulties for the generalization of the theory due to the small sample size. Therefore, further studies could consider an increased sample size and media diversity, the difference in information diffusion according to the media type, and information proximity could be explored in more detail. Moreover, previous network research has commonly observed a causal relationship between the independent and dependent variable (Kadushin, 2012). In this study, degree centrality as an independent variable might have causal relationship with performance as a dependent variable. However, in the case of network analysis research, network indices could be computed after thenetwork relationship is created. An annual analysis could help mitigate this limitation.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 05일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:10 오전