• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

유사한 인기도 추세를 갖는 웹 객체들의 클러스터링 (Clustering of Web Objects with Similar Popularity Trends)

10 페이지
기타파일
최초등록일 2025.03.13 최종저작일 2008.08
10P 미리보기
유사한 인기도 추세를 갖는 웹 객체들의 클러스터링
  • 미리보기

    서지정보

    · 발행기관 : 한국정보처리학회
    · 수록지 정보 : 정보처리학회논문지D / 15권 / 4호 / 485 ~ 494페이지
    · 저자명 : 노웅기

    초록

    인터넷이 광범위하게 활용됨에 따라 검색 키워드, 멀티미디어 객체, 웹 페이지, 블로그 등의 다양한 웹 객체들이 크게 증가하고 있다. 이러한 웹 객체들의 인기도는 시간에 따라 변화하며, 그러한 웹 객체 인기도의 시간적 패턴에 대한 마이닝이 여러 가지 웹 응용에 필요한 중요한 연구 과제가 되고 있다. 예를 들어, 검색 키워드에 대한 인기도 패턴의 분석은 앞으로 인기가 높아질 키워드를 미리 예측할 수 있게 하여 광고주들에게 키워드를 판매하기 위한 가격을 결정하는 데에 중요한 자료가 될 수 있다. 하지만, 웹 객체 인기도가 시간에 따라 변화하고 웹 객체의 개수가 매우 방대하다는 특성으로 인하여 웹 객체 인기도에 대한 분석은 매우 어려운 문제이다. 본 논문에서는 웹 객체 인기도의 시간적 패턴을 마이닝하기 위한 효율적인 알고리즘을 제안한다. 본 논문은 웹 객체 인기도를 시계열로 표현하고, 두 웹 객체 인기도 간의 유사성을 측정하기 위하여 gap 척도를 제안한다. gap 척도의 효율적인 계산을 위하여 FFT를 활용한 알고리즘을 제안하고, 밀도기반 클러스터링 알고리즘을 이용하여 유사한 인기도 추세를 갖는 웹 객체들의 클러스터를 생성한다. 본 논문에서는 웹 객체 인기도가 특정 분포를 따르거나 주기적이라고 가정하지 않는다. Google Trends 웹 사이트로부터 구한 검색 키워드 인기도를 이용한 실험을 통하여, 제안된 알고리즘이 실세계 응용에서 유용함을 보인다.

    영어초록

    Huge amounts of various web items such as keywords, images, and web pages are being made widely available on the Web. The popularities of such web items continuously change over time, and mining temporal patterns in popularities of web items is an important problem that is useful for several web applications. For example, the temporal patterns in popularities of search keywords help web search enterprises predict future popular keywords, enabling them to make price decisions when marketing search keywords to advertisers. However, presence of millions of web items makes it difficult to scale up previous techniques for this problem. This paper proposes an efficient method for mining temporal patterns in popularities of web items. We treat the popularities of web items as time-series, and propose gapmeasure to quantify the similarity between the popularities of two web items. To reduce the computation overhead for this measure, an efficient method using the Fast Fourier Transform (FFT) is presented. We assume that the popularities of web items are not necessarily following any probabilistic distribution or periodic. For finding clusters of web items with similar popularity trends, we propose to use a density-based clustering algorithm based on the gap measure. Our experiments using the popularity trends of search keywords obtained from the Google Trends web site illustrate the scalability and usefulness of the proposed approach in real-world applications.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보처리학회논문지D”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 콘크리트 마켓 시사회
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 26일 수요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:00 오후