PARTNER
검증된 파트너 제휴사 자료

디지털 영상의 픽셀값 경사도에 의한 미디언 필터링 포렌식 판정 (Forensic Decision of Median Filtering by Pixel Value's Gradients of Digital Image)

6 페이지
기타파일
최초등록일 2025.03.12 최종저작일 2015.06
6P 미리보기
디지털 영상의 픽셀값 경사도에 의한 미디언 필터링 포렌식 판정
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 / 52권 / 6호 / 79 ~ 84페이지
    · 저자명 : 이강현

    초록

    디지털 영상의 배포에서, 위·변조자에 의해 영상이 변조되는 심각한 문제가 있다. 이러한 문제를 해결하기 위하여, 본 논문에서는 영상의 픽셀값 경사도에 따른 특징벡터를 이용한 미디언 필터링 영상 포렌식 판정 알고리즘을 제안한다. 제안된 알고리즘에서, 원영상의 픽셀값 경사도로부터 자기회귀 계수를 1∼6차까지의 6 Dim.을 계산한다. 그리고 경사도를 Poisson 방정식의 해에 의한 재구성 영상과 원영상과의 차영상으로 부터, 4 Dim. (평균값, 최대값 그리고 최대값의 좌표 i,j)의 특징벡터를 추출한다. 2 종류의 특징벡터는 10 Dim.으로 조합되어 변조된 영상의 미디언 필터링 (Median Filtering: MF) 검출기의 SVM (Support Vector Machine) 분류를 위한 학습에 사용된다. 제안된 미디언 필터링 검출 알고리즘은 동일 10 Dim. 특징벡터의MFR (Median Filter Residual) 스킴과 비교하여 원영상, 평균필터링 (3×3) 영상 그리고 JPEG (QF=90) 영상에서는 성능이 우수하며, Gaussian 필터링 (3×3) 영상에서는 성능이 다소 낮지만, 성능평가 전체항목에서 민감도 (Sensitivity; TP: True Positive rate)와 1-특이도 (1-Specificity; FP: False Positive rate)의 AUC (Area Under Curve)가 모두 1에 수렴하여‘Excellent (A)’ 등급임을 확인하였다.

    영어초록

    In a distribution of digital image, there is a serious problem that is a distribution of the altered image by a forger. For the problem solution, this paper proposes a median filtering (MF) image forensic decision algorithm using a feature vector according to the pixel value's gradients. In the proposed algorithm, AR (Autoregressive) coefficients are computed from pixel value' gradients of original image then 1th∼6th order coefficients to be six feature vector. And the reconstructed image is produced by the solution of Poisson's equation with the gradients. From the difference image between original and its reconstructed image, four feature vector (Average value, Max. value and the coordinate i,j of Max. value) is extracted. Subsequently, Two kinds of the feature vector combined to 10 Dim. feature vector that is used in the learning of a SVM (Support Vector Machine) classification for MF (Median Filtering) detector of the altered image. On the proposed algorithm of the median filtering detection, compare to MFR (Median Filter Residual) scheme that had the same 10 Dim. feature vectors, the performance is excellent at Unaltered, Averaging filtering (3×3) and JPEG (QF=90) images, and less at Gaussian filtering (3×3) image. However, in the measured performances of all items, AUC (Area Under Curve) by the sensitivity and 1-specificity is approached to 1. Thus, it is confirmed that the grade evaluation of the proposed algorithm is 'Excellent (A)'.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:10 오후