PARTNER
검증된 파트너 제휴사 자료

영상분할을 위한 혼합 가우시안 함수 임계 값 결정 (Decision of Gaussian Function Threshold for Image Segmentation)

6 페이지
기타파일
최초등록일 2025.03.12 최종저작일 2009.10
6P 미리보기
영상분할을 위한 혼합 가우시안 함수 임계 값 결정
  • 미리보기

    서지정보

    · 발행기관 : 한국인터넷방송통신학회
    · 수록지 정보 : 한국인터넷방송통신학회 논문지 / 9권 / 5호 / 163 ~ 168페이지
    · 저자명 : 정용규, 최규석, 허고은

    초록

    영상분할의 대부분의 방법들은 각 화소에서 관측되는 특징벡터로 표현하며 이들에 대하여 적절한 확률모델을 가정하게 된다. 이들 확률 모델을 결정하는 파라미터들을 통계적 방법으로 추정하여 이용하거나 각 특징 벡터간의 유사 도를 기반으로 하는 군집 알고리즘을 사용하여 분할을 수행하는 방법들을 이용한다. 이의 대표적인 방법인 EM알고리즘은 불완전한 데이터에서 미지의 파라미터에 대한 최대 우도를 계산하는 경우나 사후 확률 분포의 최대 값을 구하는 문제 등의 응용 분야가 매우 다양하지만 몇 가지의 구조적 문제점을 가지고 있다. 먼저 추정량의 성능이 시작점에 크게 의존한다는 것이며 따라서 우도 함수가 국부적 최대 값에 수렴한다는 것이다. 이러한 문제점을 해결하기 위하여 영상의 모든 레벨 값을 중심으로 형성된 가우시안 함수와 원 영상의 히스토그램을 혼합하여 영상의 새로운 히스토그램을 통해 임계 값을 설정하는 최적화된 영상분할 기법을 제시한다. 제안된 알고리즘은 MFC를 통해 구현하였으며 영상을 임계 값의 개수에 따라 다양하게 나누어 보았을 때 에지부분이 선명하게 나타나며 세밀하고 정확한 영상으로 분할됨을 확인할 수 있다.

    영어초록

    Most image segmentation methods are to represent observed feature vectors at each pixel, which are assumed as appropriated probability models. These models can be used by statistical estimating or likelihood clustering algorithms of feature vectors. EM algorithms have some calculation problems of maximum likelihood for unknown parameters from incomplete data and maximum value in post probability distribution. First, the performance is dependent upon starting positions and likelihood functions are converged on local maximum values. To solve these problems, we mixed the Gausian function and histogram at all the level values at the image, which are proposed most suitable image segmentation methods. This proposed algoritms are confirmed to classify most edges clearly and variously, which are implemented to MFC programs.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국인터넷방송통신학회 논문지”의 다른 논문도 확인해 보세요!

찾으시던 자료가 아닌가요?

지금 보는 자료와 연관되어 있어요!
왼쪽 화살표
오른쪽 화살표
문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
5:36 오전