PARTNER
검증된 파트너 제휴사 자료

속성값 이산화 및 부정값 허용을 하는 의사결정트리 기반의 유전자발현 데이터의 마커 후보 식별 (Candidate Marker Identification from Gene Expression Data with Attribute Value Discretization and Negation)

6 페이지
기타파일
최초등록일 2025.03.12 최종저작일 2011.10
6P 미리보기
속성값 이산화 및 부정값 허용을 하는 의사결정트리 기반의 유전자발현 데이터의 마커 후보 식별
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 21권 / 5호 / 575 ~ 580페이지
    · 저자명 : 이경미, 이건명

    초록

    맞춤형 의료에 대한 기대가 커지면서 분자생물학적인 의료정보의 분석이 중요해지고 있다. 유전자 발현 데이터는 생명현상의 분자생물학적 동태을 보여주는 대표적인 데이터이다. 유전자 발현 데이터의 분석을 통해서 유전자 발현 수준에서의 특정 질병의 발병, 전이, 재발 등을 예측하기 위한 마커에 대한 관심이 많다. 두 개의 대조적인 관심 집단을 식별하는 유전자를 찾기 위해 통계적인 방법 등이 이용되어 왔다. 이 논문에서는 여러 유전자의 조합을 통해서 집단을 식별할 수 있는 후보 마커를 찾는 의사결정트리 기반 방법을 제안한다. 제안한 방법에서는 수치적인 유전자의 발현값을 세 개의 범주값으로 이산화시키고, 유전자 발현값을 해당 범주값 뿐만 아니라 범주값의 부정값을 허용할 수 있도록 한다. 한편, 마커로 활용하기 위해서는 소수의 유전자만을 사용하는 것이 바람직하기 때문에, 마커에 소속할 유전자의 개수를 제한하여 마커를 찾도록 한다.

    영어초록

    With the increasing expectation on personalized medicine, it is getting importance to analyze medical information in molecular biology perspective. Gene expression data are one of representative ones to show the microscopic phenomena of biological activities. In gene expression data analysis, one of major concerns is to identify markers which can be used to predict disease occurrence, progression or recurrence in the molecular level. Existing markers candidate identification methods mainly depend on statistical hypothesis test methods. This paper proposes a search method based decision tree induction to identify candidate markers which consist of multiple genes. The propose method discretizes numeric expression level into three categorical values and allows candidate markers' genes to be expressed by their negation as well as categorical values. It is desirable to have some number of genes to be included in markers. Hence the method is devised to try to find candidate markers with restricted number of genes.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:11 오후