• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

부공간 기반 도래각 추정을 위한 높은 강건성을 지닌 상관행렬 생성 기법 (Correlation Matrix Generation Technique with High Robustness for Subspace-based DoA Estimation)

6 페이지
기타파일
최초등록일 2025.03.10 최종저작일 2022.06
6P 미리보기
부공간 기반 도래각 추정을 위한 높은 강건성을 지닌 상관행렬 생성 기법
  • 미리보기

    서지정보

    · 발행기관 : 한국항행학회
    · 수록지 정보 : 한국항행학회논문지 / 26권 / 3호 / 166 ~ 171페이지
    · 저자명 : 변부근

    초록

    본 논문에서는 선형 배열 균일 안테나에 입사하는 신호들의 상관행렬을 강건하게 생성하여 부공간 기반 기법의 도래각 추정 성능을 향상시키는 알고리즘을 제안한다. 기존의 부공간 기반 도래각 추정 기법은 상관행렬을 구한 후 신호 부공간과 잡음 부공간으로 분리하여 도래각을 추정한다. 그러나, 낮은 SNR, 작은 개수의 스냅샷에서 구해지는 상관행렬의 성분은 안테나의 잡음 성분으로 인하여 신호 부공간을 부정확하게 추정하여 도래각 추정 성능을 저하시킨다. 따라서, 기존의 상관행렬로부터 구해지는 가상의 신호 벡터를 슬라이딩 방식으로 배열함으로써 강건한 상관행렬을 생성한다. 기존의 상관행렬과 제안하는 강건한 상관행렬의 비교 분석을 위하여, 부공간 기반 기법의 대표적 방법인 MUSIC, ESPRIT을 이용하였다. 시뮬레이션 결과, 계산 복잡도는 기존의 상관행렬 대비 2.5% 이내 증가하였으나, 도래각 추정성능은 RMSE 1° 기준 SNR이 MUSIC, ESPRIT 모두 3dB 이상의 우수한 도래각 추정 성능을 보였다.

    영어초록

    In this paper, we propose an algorithm to improve DoA(direction of arrival) estimation performance of the subspace-based method by generating high robustness correlation matrix of the signals incident on the uniformly linear array antenna. The existing subspace-based DoA estimation method estimates the DoA by obtaining a correlation matrix and dividing it into a signal subspace and a noise subspace. However, the component of the correlation matrix obtained from the low SNR and small number of snapshots inaccurately estimates the signal subspace due to the noise component of the antenna, thereby degrading the DoA estimation performance. Therefore a robust correlation matrix is ​​generated by arranging virtual signal vectors obtained from the existing correlation matrix in a sliding manner. As a result of simulation using MUSIC and ESPRIT, which are representative subspace-based methods,, the computational complexity increased by less than 2.5% compared to the existing correlation matrix, but both MUSIC and ESPRIT based on RMSE 1° showed superior DoA estimation performance with an SNR of 3dB or more.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우
문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 08일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:56 오후