• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

주파수 적응 채널 잡음 모델링에 기반한 변환영역 Wyner-Ziv 부호화 방법 (Transform domain Wyner-Ziv Coding based on the frequency-adaptive channel noise modeling)

10 페이지
기타파일
최초등록일 2025.03.03 최종저작일 2009.03
10P 미리보기
주파수 적응 채널 잡음 모델링에 기반한 변환영역 Wyner-Ziv 부호화 방법
  • 미리보기

    서지정보

    · 발행기관 : 한국방송∙미디어공학회
    · 수록지 정보 : 방송공학회 논문지 / 14권 / 2호 / 144 ~ 153페이지
    · 저자명 : 김병희, 고봉혁, 전병우

    초록

    최근, 사용자 제작 콘텐츠(UCC: User Created Contents) 또는 다시점 비디오(Multiview Video) 등의 응용을 위한 경량화 부호화 기술의 필요성이 대두됨에 따라 비디오 부호화 복잡도의 대부분을 차지하는 움직임 예측/보상 과정을 부호화기가 아닌 복호화기 측에서 수행하는 분산 비디오 부호화 기술(Distributed Video Coding)에 대한 연구가 활발히 이루어지고 있다. Wyner-Ziv 부호화 기술은 채널 코딩을 이용하여 원본 영상에 대한 복호화기 측의 예측영상인 보조정보에 포함된 잡음을 제거함으로써 영상을 복원하는 구조를 가진다. 일반적인 Wyner-Ziv 부호화 기술은 키 프레임 간의 움직임 예측/보상 과정에 기반한 프레임 보간법을 통해 보조정보를 생성하며, Shannon limit에 근접한 성능을 보이는 Turbo 코드나 LDPC 코드를 통해 잡음을 제거한다. Wyner-Ziv 부호화 기술은 채널 코드의 복호화를 위해 보조정보에 포함된 잡음의 정도를 예측하는데, 이를 ‘가상 채널 잡음(Virtual Channel Noise)’이라 하며 일반적으로 Laplacian이나 Gaussian으로 모델화 한다. 본 논문은 변환영역에서의 주파수 단위에 적응적인 채널 잡음 모델링에 기반한 Wyner-Ziv 부호화 방법을 제안한다. 다양한 영상에 대한 제안 방법의 실험 결과는 기존 방법과 비교하여 최대 약 0.52dB에 해당하는 율-왜곡 성능의 향상을 보여준다.

    영어초록

    Recently, as the necessity of a light-weighted video encoding technique has been rising for applications such as UCC(User Created Contents) or Multiview Video, Distributed Video Coding(DVC) where a decoder, not an encoder, performs the motion estimation/compensation taking most of computational complexity has been vigorously investigated. Wyner-Ziv coding reconstructs an image by eliminating the noise on side information which is decoder-side prediction of original image using channel code. Generally the side information of Wyner-Ziv coding is generated by using frame interpolation between key frames. The channel code such as Turbo code or LDPC code which shows a performance close to the Shannon's limit is employed. The noise model of Wyner-Ziv coding for channel decoding is called Virtual Channel Noise and is generally modeled by Laplacian or Gaussian distribution. In this paper, we propose a Wyner-Ziv coding method based on the frequency-adaptive channel noise modeling in transform domain. The experimental results with various sequences prove that the proposed method makes the channel noise model more accurate compared to the conventional scheme, resulting in improvement of the rate-distortion performance by up to 0.52dB.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“방송공학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 02월 02일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
12:35 오후