PARTNER
검증된 파트너 제휴사 자료

다층회귀신경예측 모델 및 HMM를 이용한 임베디드 음성인식 시스템 개발에 관한 연구

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
6 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2004.06
6P 미리보기
다층회귀신경예측 모델 및 HMM를 이용한 임베디드 음성인식 시스템 개발에 관한 연구
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 14권 / 3호 / 273 ~ 278페이지
    · 저자명 : 김정훈, 장원일, 김영탁, 이상배

    초록

    본 논문은 주인식기로 흔히 사용되는 HMM 인식 알고리즘을 보완하기 위한 방법으로 회귀신경회로망(Recurrent neural networks : RNN)을 적용하였다. 이 회귀신경회로망 중에서 실 시간적으로 동작이 가능하게 한 방법인 다층회귀신경예측 모델(Multi-layer Recurrent Neural Prediction Model : MRNPM)을 사용하여 학습 및 인식기로 구현하였으며, HMM과 MRNPM 을 이용하여 Hybrid형태의 주 인식기로 설계하였다. 설계된 음성 인식 알고리즘을 잘 구별되지 않는 한국어 숫자음(13개 단어)에 대해 화자 독립형으로 인식률 테스트 한 결과 기존의 HMM인식기 보다 5%정도의 인식률 향상이 나타났다. 이 결과를 이용하여 실제 DSP(TMS320C6711) 환경 내에서 최적(인식) 코드만을 추출하여 임베디드 음성 인식 시스템을 구현하였다. 마찬가지로 임베디드 시스템의 구현 결과도 기존 단독 HMM 인식시스템보다 향상된 인식시스템을 구현할 수 있게 되었다.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 05월 17일 토요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:03 오후