PARTNER
검증된 파트너 제휴사 자료

주요성분분석과 상호정보 추정에 의한 입력변수선택 (Input variables selection by principal component analysis and mutual information estimation)

6 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2007.04
6P 미리보기
주요성분분석과 상호정보 추정에 의한 입력변수선택
  • 미리보기

    서지정보

    · 발행기관 : 한국지능시스템학회
    · 수록지 정보 : 한국지능시스템학회 논문지 / 17권 / 2호 / 220 ~ 225페이지
    · 저자명 : 조용현, 홍성준

    초록

    본 논문에서는 주요성분분석과 상호정보 추정을 조합한 입력변수선택 기법을 제안하였다. 여기서 주요성분분석은 2차원 통계성에 기반을 둔 기법으로 입력변수 간의 종속성을 빠르게 제거하여 과추정을 방지하기 위함이고, 상호정보의 추정은 적응적 분할을 이용하여 입력변수의 확률밀도함수를 계산함으로써 변수상호간의 종속성을 좀 더 정확하게 측정하기 위함이다. 제안된 기법을 각 500개 샘플의 7개 신호를 가지는 인위적인 문제와 각 55개 샘플의 24개의 신호를 가지는 환경오염신호를 대상으로 각각 실험한 결과, 빠르고 정확한 변수의 선택이 이루어짐을 확인하였다. 또한 주요성분분석을 수행하지 않을 때와 정규분할의 상호정보 추정 때보다 제안된 방법은 각각 우수한 선택성능이 있음을 확인하였다.

    영어초록

    This paper presents an efficient input variable selection method using both principal component analysis(PCA) and adaptive partition mutual information(AP-MI) estimation. PCA which is based on 2nd order statistics, is applied to prevent a overestimation by quickly removing the dependence between input variables. AP-MI estimation is also applied to estimate an accurate dependence information by equally partitioning the samples of input variable for calculating the probability density function. The proposed method has been applied to 2 problems for selecting the input variables, which are the 7 artificial signals of 500 samples and the 24 environmental pollution signals of 55 samples, respectively. The experimental results show that the proposed methods has a fast and accurate selection performance. The proposed method has also respectively better performance than AP-MI estimation without the PCA and regular partition MI estimation.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국지능시스템학회 논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:36 오후