PARTNER
검증된 파트너 제휴사 자료

FP-tree와 DHP 연관 규칙 탐사 알고리즘의 실험적 성능 비교 (Performance Evaluation of the FP-tree and the DHP Algorithms for Association Rule Mining)

9 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2008.06
9P 미리보기
FP-tree와 DHP 연관 규칙 탐사 알고리즘의 실험적 성능 비교
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 데이타베이스 / 35권 / 3호 / 199 ~ 207페이지
    · 저자명 : 이형봉, 김진호

    초록

    FP-tree(Frequent Pattern Tree) 연관 규칙 탐사 알고리즘은 DB 스캔에 대한 부담을 획기적으로 절감시킴으로써 전체적인 성능을 향상시키고자 제안되었고, 따라서 다른 기법에 기반하는 알고리즘보다 성능이 매우 우수한 것으로 알려져 있다. 그러나, FP-tree 알고리즘은 기본적으로 DB에 저장된 거래 내용 중 빈발 항목을 포함하는 모든 거래를 트리에 저장해야 하기 때문에 그만큼 많은 메모리를 필요로 한다. 이 논문에서는 범용 운영체제인 유닉스 시스템 환경에서 FP-tree 알고리즘을 구현하여 소요 메모리와 실행시간 등 두 가지 성능 관점에서 해시 트리 및 직접 해시 테이블을 사용하는 DHP(Direct Hashing and Pruning) 알고리즘과 비교한다. 그 결과로서 알려진 바와는 크게 다르게 시스템 메모리가 충분한 상황에서도 대형 편의점 수준의 규모에 적용 가능한 거래 건수 100K, 전체 항목 개수 1K~7K, 평균 거래 길이 5~10, 평균 빈발 항목 집합 크기 2~12인 데이타에 대해서 FP-tree 알고리즘이 DHP 알고리즘보다 열등한 경우가 존재함을 보인다.

    영어초록

    The FP-tree(Frequent Pattern Tree) mining association rules algorithm was proposed to improve mining performance by reducing DB scan overhead dramatically, and it is recognized that the performance of it is better than that of any other algorithms based on different approaches. But the FP-tree algorithm needs a few more memory because it has to store all transactions including frequent itemsets of the DB. This paper implements a FP-tree algorithm on a general purpose UNIX system and compares it with the DHP(Direct Hashing and Pruning) algorithm which uses hash tree and direct hash table from the point of memory usage and execution time. The results show surprisingly that the FP-tree algorithm is poor than the DHP algorithm in some cases even if the system memory is sufficient for the FP-tree. The characteristics of the test data are as follows. The size of DB is 100K, the number of total items is 1K~7K, avenrage length of transactions is 5~10, avergage size of maximal frequent itemsets is 2~12(these are typical attributes of data for large-scale convenience stores).

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 데이타베이스”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 03일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
4:25 오후