PARTNER
검증된 파트너 제휴사 자료

적대적 멀티 에이전트 환경에서 효율적인 강화 학습을 위한 정책 모델링 (Policy Modeling for Efficient Reinforcement Learning in Adversarial Multi-Agent Environments)

10 페이지
기타파일
최초등록일 2025.03.01 최종저작일 2008.03
10P 미리보기
적대적 멀티 에이전트 환경에서 효율적인 강화 학습을 위한 정책 모델링
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 35권 / 3호 / 179 ~ 188페이지
    · 저자명 : 권기덕, 김인철

    초록

    멀티 에이전트 강화 학습에서 해결해야 할 중요한 문제는 자신의 작업 성능에 영향을 미칠 수 있는 다른 에이전트들이 존재하는 동적 환경에서 한 에이전트가 시행착오적 상호작용을 통해 어떻게 자신의 최적 행동 정책을 학습할 수 있느냐 하는 것이다. 멀티 에이전트 강화 학습을 위한 기존 연구들은 대부분 단일 에이전트 MDP 기반의 강화 학습기법들을 큰 변화 없이 그대로 적용하거나 비록 다른 에이전트에 관한 별도의 모델을 이용하더라도 다른 에이전트에 관해 요구되는 정보나 가정이 현실적이지 못하다는 한계점을 가지고 있다. 본 논문에서는 멀티 에이전트 강화 학습기술에 기초가 되는 기본 개념들을 정형화하고 이들을 기초로 기존 연구들의 특징과 한계점을 비교한다. 그리고 새로운 행동 정책 모델을 소개한 뒤, 이것을 이용한 강화 학습 방법을 설명한다. 본 논문에서 제안하는 멀티 에이전트 강화학습 방법은 상대 모델을 이용하는 기존의 멀티 에이전트 강화 학습 연구들에서 주로 시도되었던 상대 에이전트의 Q 평가 함수 모델 대신 상대 에이전트의 행동 정책 모델을 학습하며, 표현력은 풍부하나 학습에 시간과 노력이 많이 요구되는 유한 상태 오토마타나 마코프 체인과 같은 행동 정책 모델들에 비해 비교적 간단한 형태의 행동 정책 모델을 이용함으로써 학습의 효율성을 높였다. 또한, 본 논문에서는 대표적인 적대적 멀티 에이전트 환경인 고양이와 쥐게임을 소개하고, 이 게임을 테스베드삼아 비교 실험들을 수행하고 그 결과를 설명함으로써 본 논문에서 제안하는 정책 모델 기반의 멀티 에이전트 강화 학습의 효과를 분석해본다.

    영어초록

    As important issue in multiagent reinforcement learning is how an agent should learn its optimal policy through trial-and-error interactions in a dynamic environment where there exist other agents able to influence its own performance. Most previous works for multiagent reinforcement learning tend to apply single-agent reinforcement learning techniques without any extensions or are based upon some unrealistic assumptions even though they build and use explicit models of other agents. In this paper, basic concepts that constitute the common foundation of multiagent reinforcement learning techniques are first formulated, and then, based on these concepts, previous works are compared in terms of characteristics and limitations. After that, a policy model of the opponent agent and a new multiagent reinforcement learning method using this model are introduced. Unlike previous works, the proposed multiagent reinforcement learning method utilize a policy model instead of the Q function model of the opponent agent. Moreover, this learning method can improve learning efficiency by using a simpler one than other richer but time-consuming policy models such as Finite State Machines(FSM) and Markov chains. In this paper, the Cat and Mouse game is introduced as an adversarial multiagent environment. And effectiveness of the proposed multiagent reinforcement learning method is analyzed through experiments using this game as testbed.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
6:06 오전