• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

PCA 혼합 모형과 클래스 기반 특징에 의한 LDA의 확장

한국학술지에서 제공하는 국내 최고 수준의 학술 데이터베이스를 통해 다양한 논문과 학술지 정보를 만나보세요.
8 페이지
기타파일
최초등록일 2025.02.28 최종저작일 2005.08
8P 미리보기
PCA 혼합 모형과 클래스 기반 특징에 의한 LDA의 확장
  • 미리보기

    서지정보

    · 발행기관 : 한국정보과학회
    · 수록지 정보 : 정보과학회논문지 : 소프트웨어 및 응용 / 32권 / 8호 / 781 ~ 788페이지
    · 저자명 : 김현철, 김대진, 이미애, 박기수, 방승양

    초록

    클래스간 퍼진 정도와 클래스내 퍼진 정도의 비를 최대화하는 변환를 구하는 데이타 구분 기술이다. LDA는 여러 가지 응용에 성공적으로 응용되었지만 그 모델의 단순성과 관련된 두 가지 한계를 가지고 있다. 첫째는 각 클래스의 데이타가 가우시안 분포를 가진다고 가정되므로 복잡한 분포를 갖는 데이타를 구분하는데 실패한다는 것이다. 둘째는 LDA가 클래스의 전체 범위에 대해서 단지 하나의 변환만을 주므로 클래스 기반의 정보를 잃게 된다는 것이다. 본 논문은 위의 문제들을 극복하는 세가지 확장들을 제안한다. 첫 번째 확장은 더 복잡한 분포를 표현할 수 있는 PCA 혼합 모형을 이용하여 클래스내 퍼진 정도를 모델링함으로써 첫째 문제를 극복한다. 두번째 확장은 클래스 기반 특징들을 제공하기 위해서 각 클래스에 대해 다른 변환을 취함으로써 둘째 문제를 극복한다. 셋째 확장은 PCA 혼합 모형의 관점에서 각 클래스를 표현함으로써 앞의 두 확장을 결합하는 것이다. 숫자 인식과 알파벳 인식에 대한 실험에서 LDA의 모든 제안된 확장들이 LDA보다 더 좋은 분류 성능을 보여 주었다.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“정보과학회논문지 : 소프트웨어 및 응용”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
  • 콘크리트 마켓 시사회
  • 전문가요청 배너
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 11월 25일 화요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
9:57 오전