PARTNER
검증된 파트너 제휴사 자료

단위 신경망과 특징벡터 차원 축소 기반의 음악 분위기 자동판별 (Music Mood Classification based on a New Feature Reduction Method and Modular Neural Network))

11 페이지
기타파일
최초등록일 2025.02.12 최종저작일 2013.08
11P 미리보기
단위 신경망과 특징벡터 차원 축소 기반의 음악 분위기 자동판별
  • 미리보기

    서지정보

    · 발행기관 : 한국산업정보학회
    · 수록지 정보 : 한국산업정보학회논문지 / 18권 / 4호 / 25 ~ 35페이지
    · 저자명 : 송민균, 김현수, 문창배, 김병만, 오득환

    초록

    본 논문에서는 개인화된 분위기 분류 모델 대신에 대중의 분위기 분류 모델을 제안한다. 분위기 판별 성능을 개선하기 위해 두 가지 접근 방법을 선택하였는데, 그 첫 번째가 표준편차에 기초한 특징축소이다. 이는 음악의 특징을 추출하기 위해 사용하는 MIRtoolbox에서 추출되는 391개의 특징들을 모두 사용할 경우의 성능 저하 문제를 해결하기 위한 방법이다. 실험결과, 본 논문에서 제안한 특징축소 방법이 기존의 차원 축소 방법인 R-Square와 PCA보다 성능이 좋음을 확인할 수 있었다. 그리고 특징축소 방법만으로는 성능 개선에 한계가 있어 두 번째 개선 방법으로 단위 신경망을 사용하여 추가의 성능 개선을 시도하였다. 실험결과 이 역시 유효한 성능 개선이 이루어짐을 확인할 수 있었다.

    영어초록

    This paper focuses on building a generalized mood classification model with many mood classes instead of a personalized one with few mood classes. Two methods are adopted to improve the performance of mood classification. The one of them is feature reduction based on standard deviation of feature values, which is designed to solve the problem of lowered performance when all 391 features provided by MIR toolbox used to extract features of music. The experiments show that the feature reduction methods suggested in this paper have better performance than that of the conventional dimension reduction methods, R-Square and PCA. As performance improvement by feature reduction only is subject to limit, modular neural network is used as another method to improve the performance. The experiments show that the method also improves performance effectively

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“한국산업정보학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요. 해피캠퍼스의 방대한 자료 중에서 선별하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 목차부터 본문내용까지 자동 생성해 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 캐시를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2025년 08월 04일 월요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
11:29 오후