• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법 (Content‐based Recommendation Based on Social Network for Personalized News Services)

15 페이지
기타파일
최초등록일 2025.02.11 최종저작일 2013.10
15P 미리보기
개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법
  • 미리보기

    서지정보

    · 발행기관 : 한국지능정보시스템학회
    · 수록지 정보 : 지능정보연구 / 19권 / 3호 / 57 ~ 71페이지
    · 저자명 : 홍명덕, 오경진, 가명현, 조근식

    초록

    세계에는 수많은 사람들이 살아가고 있고, 사람들의 일상으로부터 매일, 매 시간 단위로 새로운 뉴스가 발생한다. 발생되는 뉴스는 예정된 일과 예상하지 못한 일들을 포함하고 있다. 발생하는 뉴스의 거대한 양과 이를 전달하는 수많은 미디어들로 인해 사람들은 뉴스 콘텐츠를 이용하는데 많은 시간을 소비하게 된다. 하지만 미디어에 시시각각 나타나는 속보와 실시간 이슈의 대부분이 가십 기사로 이루어져 있어 사용자들이 자신의 성향에 맞는 뉴스를 선별하고, 뉴스로부터 정보를 획득하는 것은 쉽지 않은 일이다. 또한 사용자의 관심사가 시간에 따라 변하기 때문에 뉴스 제공에 있어 사용자의 변하는 관심사를 반영하는 것이 요구된다. 본 논문에서는 사용자의 최근 관심사를 기반으로 사용자 선호도에 맞는 뉴스를 제공하기 위한 콘텐츠 기반의 추천 기법 및 시스템을 제안한다. 사용자의 최근 선호도를 파악하기 위하여 소셜 네트워크 서비스인 Facebook 사용자의 정보와 최근 게시글을 이용하여 동적으로 사용자 프로파일을 생성하여 이를 뉴스 서비스에 활용하고, 사용자 선호도에 적합한 뉴스를 추출하기 위해서 뉴스 콘텐츠의 분석을 요구한다. 뉴스 콘텐츠 분석을 위해 미디어에서 제공되는 뉴스의 카테고리를 사용하고, 뉴스 방송원고의 분석 및 주요 키워드 추출을 통해 뉴스 프로파일을 생성한다. 사용자 프로파일과 뉴스 프로파일 간의 유사도 측정을 위해서는 두 프로파일 간 형식의 일치화가 요구되므로 사용자 프로파일을 뉴스 프로파일과 동일한 형태로 생성한다. 사용자가 시스템에 접속하면 시스템은 사용자 프로파일에 명시된 선호도를 기반으로 뉴스 프로파일과의 유사도를 측정하고, 사용자 선호도에 가장 적합한 뉴스들을 제공하게 된다. 또한 사용자에게 제공된 뉴스 프로파일과 다른 뉴스 프로파일들 간에 유사도를 측정하여 유사도가 높은 관련된 뉴스들을 제공하게 된다. 제안한 개인화된 뉴스 서비스의 성능을 평가하기 위해 사용자에게 추천된 뉴스에 대한 사용자 평가와 시스템 예측값의 오차를 기반으로 6Sub-Vectors 벤치마크 알고리즘과 성능 평가를 수행하였고, 실험 결과를 통해 제안한 시스템의 우수성을 입증하였다.

    영어초록

    Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users’ recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content‐based news recommendation system is proposed to provide the personalized news service. For a personalized service, user’s personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well‐known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF‐IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top‐N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non‐profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF‐IDF. Another is 6Sub‐Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user’s social network information and WordNet functions, in terms of prediction error of recommended news.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“지능정보연구”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 22일 목요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
2:02 오전