• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료

배경잡음에 적응하는 진동센서 기반 목표물 탐지 알고리즘 (Target Detection Algorithm Based on Seismic Sensor for Adaptation of Background Noise)

9 페이지
기타파일
최초등록일 2025.02.10 최종저작일 2013.07
9P 미리보기
배경잡음에 적응하는 진동센서 기반 목표물 탐지 알고리즘
  • 미리보기

    서지정보

    · 발행기관 : 대한전자공학회
    · 수록지 정보 : 전자공학회논문지 / 50권 / 7호 / 258 ~ 266페이지
    · 저자명 : 이재일, 이종현, 배진호, 권지훈

    초록

    본 논문에서는 진동센서를 기반으로 하는 탐지 시스템에서 불규칙적으로 변화는 잡음의 특성을 고려하여 허위경보(false alarm)를 감소하기 위한 적응형 탐지 알고리즘을 제안한다. 제안된 알고리즘은 커널 함수(Kerenl function)을 이용한 1차 검출과 탐지 확정 단계를 적용한 2차 검출로 구성된다. 1차 검출기의 커널 함수는 측정된 신호로부터 잡음의 확률적 모수를 이용하여 잡음 변화에 따라 Neyman-Pearson 결정법으로 문턱 값을 찾아 구한다. 그리고 2차 탐지기는 1차 탐지된 표본수를 이용하여 발걸음 신호의 점유시간을 계산한 후 4단계의 탐지 확정 단계로 구성된다. 본 논문에서 제안된 알고리즘을 검증하기 위해 측정된 걷기와 뛰기 진동 신호를 이용하여 발걸음 신호에 대한 탐지 실험을 수행 하였으며 고정 문턱 값을 이용한 탐지 결과와 비교 하였다. 제안된 1차 검출기의 목표물 탐지 결과 사람의 걷기와 뛰기에 대하여 10m 구간까지 95%의 높은 탐지 성능을 획득하였다. 또한, 허위경보 확률은 고정 문턱 값과 비교할 때 40%에서 20%로 감소하였으며 탐지 확정 단계를 적용한 결과 4%미만으로 크게 감소한 결과를 얻었다.

    영어초록

    We propose adaptive detection algorithm to reduce a false alarm by considering the characteristics of the random noise on the detection system based on a seismic sensor. The proposed algorithm consists of the first step detection using kernel function and the second step detection using detection classes. Kernel function of the first step detection is obtained from the threshold of the Neyman-Pearon decision criterion using the probability density functions varied along the noise from the measured signal. The second step detector consists of 4 step detection class by calculating the occupancy time of the footstep using the frist detected samples. In order to verify performance of the proposed algorithm, the detection of the footsteps using measured signal of targets (walking and running) are performed experimentally. The detection results are compared with a fixed threshold detector. The frist step detection result has the high detection performance of 95% up to 10m area. Also, the false alarm probability is decreased from 40% to 20% when it is compared with the fixed threshold detector. By applying the detection class(second step detector), it is greatly reduced to less than 4%.

    참고자료

    · 없음
  • 자주묻는질문의 답변을 확인해 주세요

    해피캠퍼스 FAQ 더보기

    꼭 알아주세요

    • 자료의 정보 및 내용의 진실성에 대하여 해피캠퍼스는 보증하지 않으며, 해당 정보 및 게시물 저작권과 기타 법적 책임은 자료 등록자에게 있습니다.
      자료 및 게시물 내용의 불법적 이용, 무단 전재∙배포는 금지되어 있습니다.
      저작권침해, 명예훼손 등 분쟁 요소 발견 시 고객센터의 저작권침해 신고센터를 이용해 주시기 바랍니다.
    • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
      파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
      파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

“전자공학회논문지”의 다른 논문도 확인해 보세요!

문서 초안을 생성해주는 EasyAI
안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
저는 아래와 같이 작업을 도와드립니다.
- 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
- 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
- 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
이런 주제들을 입력해 보세요.
- 유아에게 적합한 문학작품의 기준과 특성
- 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
- 작별인사 독후감
해캠 AI 챗봇과 대화하기
챗봇으로 간편하게 상담해보세요.
2026년 01월 04일 일요일
AI 챗봇
안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
3:20 오후