• AI글쓰기 2.1 업데이트
PARTNER
검증된 파트너 제휴사 자료
non-ai
판매자가 AI를 사용하지 않은 독창적인 자료

이력패턴데이터를 이용한 돌발상황 감지알고리즘 개발

방대한 850만건의 자료 중 주제별로 만들수 있는 최적의 산출물을 해피 캠퍼스에서 체험 하세요 전문가의 지식과 인사이트를 활용하여 쉽고 폭넓게 이해하고 적용할수 있는 기회를 놓치지 마세요
9 페이지
어도비 PDF
최초등록일 2015.03.25 최종저작일 2010.12
9P 미리보기
이력패턴데이터를 이용한 돌발상황 감지알고리즘 개발
  • * 본 문서는 배포용으로 복사 및 편집이 불가합니다.

    미리보기

    서지정보

    · 발행기관 : 대한교통학회
    · 수록지 정보 : 대한교통학회지 / 28권 / 6호
    · 저자명 : 허민국, 노창균, 김원길, 손봉수

    목차

    Ⅰ. 서론
    Ⅱ. 기존모형 고찰
    Ⅲ. 알고리즘 개발
    Ⅳ. 모형의 적용결과 및 평가
    Ⅴ. 요약 및 결론
    참고문헌

    초록

    본 연구에서는 과거의 교통패턴과 실시간 교통데이터와의 차이값을 이용하여 돌발상황을 판정하는 알고리즘을 개
    발하고자 한다. 이를 통해 운영자의 측면에서 이해하기 쉽고 운영 및 수정·보완이 용이한 돌발상황 감지알고리즘을
    개발하는 것이 목적이다. 본 연구에서 제안한 알고리즘은 교통패턴 구축을 위하여 30초 주기 원시데이터를 바탕으로
    동일한 지점의 동일한 요일 및 시간대의 교통량과 속도를 이용한 가중이동평균법을 사용하였다. 모형은 오류자료 보
    정처리, 소통상황 판정, 패턴자료와의 비교, 돌발상황 판정, 지속성 검사의 단계로 이루어졌으며, 적정 파라메타 선
    정을 위하여 다양한 파라메타값을 적용하였다. 알고리즘의 적용 결과 검지율은 평균 94.7%, 오보율은 0.8%, 평균
    검지시간은 1.6분으로 기존 모형과의 비교분석 결과에서도 우수한 편에 속하는 것을 확인할 수 있다. 교통패턴이라
    는 개념을 사용하여 복잡하지 않은 과정을 통해 우수한 결과를 얻었으며, 운영자의 측면에서 실제 운영자들이 돌발
    상황을 판단하는 과정을 알고리즘으로 완성하였다는 측면에서 본 연구의 의의가 있다.

    영어초록

    Research of this paper focused on developing and demonstrating of algorithm with the figures of
    difference between historical traffic pattern data and real-time traffic data to decide on what the
    incident is. The aim of this dissertation is to develop incident detection algorithm which can be
    understood and modified easier to operate. To establish traffic pattern of this algorithm, weighted
    moving average method was applied. The basis of this method was traffic volume and speed of the
    same day and time at the same location based on 30-second raw data. The model was completed by
    a serious of steps of process-screening process of error data, decision of the traffic condition,
    comparison with pattern data, decision of incident circumstances, continuity test. A variety of
    parameter value was applied to select reasonable parameter. Results of application of the algorithm
    came out with figures of average detection rate 94.7 percent, 0.8 percent rate of misinformation
    and the average detection time 1.6 minutes. With these following results, the detection rate turned
    out to be superior compared with result of existing model. Applying the concept of traffic patterns
    was useful to gain excellent results of this study. Also, this study is significant in terms of making
    algorithm which theorized the decision process of actual operators.

    참고자료

    · 없음
  • 자료후기

      Ai 리뷰
      지식판매자의 자료는 질이 높고, 각 분야의 전문 지식을 바탕으로 한 콘텐츠가 많아 학습하는 재미가 쏠쏠합니다. 앞으로도 많은 유익한 자료를 기대합니다!
    • 자주묻는질문의 답변을 확인해 주세요

      해피캠퍼스 FAQ 더보기

      꼭 알아주세요

      • 본 학술논문은 (주)학지사와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
        본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.
      • 해피캠퍼스는 구매자와 판매자 모두가 만족하는 서비스가 되도록 노력하고 있으며, 아래의 4가지 자료환불 조건을 꼭 확인해주시기 바랍니다.
        파일오류 중복자료 저작권 없음 설명과 실제 내용 불일치
        파일의 다운로드가 제대로 되지 않거나 파일형식에 맞는 프로그램으로 정상 작동하지 않는 경우 다른 자료와 70% 이상 내용이 일치하는 경우 (중복임을 확인할 수 있는 근거 필요함) 인터넷의 다른 사이트, 연구기관, 학교, 서적 등의 자료를 도용한 경우 자료의 설명과 실제 자료의 내용이 일치하지 않는 경우

    “대한교통학회지”의 다른 논문도 확인해 보세요!

    문서 초안을 생성해주는 EasyAI
    안녕하세요 해피캠퍼스의 20년의 운영 노하우를 이용하여 당신만의 초안을 만들어주는 EasyAI 입니다.
    저는 아래와 같이 작업을 도와드립니다.
    - 주제만 입력하면 AI가 방대한 정보를 재가공하여, 최적의 목차와 내용을 자동으로 만들어 드립니다.
    - 장문의 콘텐츠를 쉽고 빠르게 작성해 드립니다.
    - 스토어에서 무료 이용권를 계정별로 1회 발급 받을 수 있습니다. 지금 바로 체험해 보세요!
    이런 주제들을 입력해 보세요.
    - 유아에게 적합한 문학작품의 기준과 특성
    - 한국인의 가치관 중에서 정신적 가치관을 이루는 것들을 문화적 문법으로 정리하고, 현대한국사회에서 일어나는 사건과 사고를 비교하여 자신의 의견으로 기술하세요
    - 작별인사 독후감
    해캠 AI 챗봇과 대화하기
    챗봇으로 간편하게 상담해보세요.
    2026년 02월 03일 화요일
    AI 챗봇
    안녕하세요. 해피캠퍼스 AI 챗봇입니다. 무엇이 궁금하신가요?
    11:48 오후