총 338개
-
식품생화학 탄수화물 대사2025.05.071. 해당과정 해당과정은 생명체 내에서 가장 중요하고 기본적인 대사과정으로 글루코스의 이화과정입니다. 해당과정은 10단계로 구성되며, 한 분자의 포도당으로부터 2분자의 피루브산, 2분자의 ATP와 2분자의 NADH가 생성됩니다. 해당과정의 주요 단계와 조절 기작에 대해 설명하고 있습니다. 2. 포도당 신생합성 포도당 신생합성은 젖산, 아미노산, 글리세롤 등의 전구체를 이용하여 포도당을 합성하는 과정입니다. 포도당 신생합성 경로는 해당과정과 일부 반응 경로를 공유하며, 주요 조절 지점은 PFK-1, FBPase-1, F-2,6-BP ...2025.05.07
-
식품생화학 대사의 통합2025.05.071. 호르몬 호르몬은 내분비선이나 세포에서 분비되고 혈액을 통해 작용대상이 되는 세포로 이동하여 호르몬의 수용체에 결합하면서 생체 조절 기능(몸의 항상성 유지)을 하는 물질이다. 호르몬은 구성하는 물질의 종류에 따라 아민, 펩타이드 또는 단백질, 스테로이드 호르몬으로 분류할 수 있다. 호르몬의 작용은 매우 정교한 조절 시스템이 관여하는데 특히 시상하부, 뇌하수체, 특수한 내분비선에는 더 정교한 시스템이 작용하게 된다. 2. 신호전달 호르몬은 특정한 수용체에 도달하면 세포 안에서 연쇄적인 여러 반응을 일으키게 된다. 호르몬이 수용체에...2025.05.07
-
생화학 16단원 에너지 대사 요약정리2025.11.121. 중간 대사(Intermediary Metabolism) 중간 대사는 세포가 주변 물질로부터 에너지와 환원력을 얻는 방식과 고분자 구성 재료를 만들고 합성하는 과정을 다룬다. 세포는 이를 통해 필요한 에너지를 획득하고 생명 유지에 필요한 물질들을 합성한다. 2. ATP의 에너지 특성 ATP는 가수분해 시 생성되는 정인산이 공명 안정화되어 있고, 3개의 인산기 간 정전기 반발이 크며, 엔트로피 증가와 물 분자와의 상호작용으로 인해 에너지가 풍부한 분자가 된다. 이러한 특성으로 ATP는 세포 내 주요 에너지 통화 역할을 한다. 3....2025.11.12
-
식품생화학 지방산 분해, 생합성 및 지단백 대사2025.05.071. 지방산 분해과정 지방산 분해과정에는 지방지방의 분해, 지방산의 흡수 및 미토콘드리아로의 이동, 지방산 β-산화, 케톤체의 형성 등이 포함됩니다. 지방산 분해를 통해 다량의 전자수용체와 아세틸 CoA가 생성되어 에너지 대사에 중요한 역할을 합니다. 2. 지방산 생합성 지방산 생합성은 아세틸 CoA를 전구물질로 하여 미토콘드리아 아세틸 CoA를 세포질로 수송하는 시트르산 셔틀, 말로닐 CoA의 합성, 지방산 합성 등의 과정을 거칩니다. 또한 불포화 지방산의 합성과 필수 지방산, 에탄올 섭취와 지방간 생성, 트라이아실글리세롤 합성 ...2025.05.07
-
전북대 화공 응용생화학 챕터5 과제2025.01.171. 화공 응용생화학 이 자료는 전북대학교 화공 응용생화학 과목의 5장 과제에 대한 내용입니다. 주요 내용으로는 효소 반응 메커니즘, 효소 억제, ATP 합성 과정 등이 포함되어 있습니다. 2. 효소 반응 메커니즘 효소 반응의 중간단계와 최종 생성물 형성 과정에 대해 설명하고 있습니다. 효소와 기질의 결합, 중간체 형성, 최종 생성물 방출 등 효소 반응의 전반적인 메커니즘을 다루고 있습니다. 3. 효소 억제 효소 억제제의 종류와 작용 메커니즘에 대해 설명하고 있습니다. 경쟁적 억제, 비경쟁적 억제 등 다양한 억제 방식과 각각의 특징...2025.01.17
-
식품생화학 아미노산 대사2025.05.071. 아미노산의 합성 아미노산은 질소를 함유하는 물질이며, 단백질의 구성 단위이다. 공기 중에서 고정된 질소는 아미노산으로 합성된 후 단백질 합성의 전구체로 사용된다. 질소 함유 화합물들은 몸 안에 저장되지 않고, 식품에서 섭취한 단백질로부터 생성된 아미노산의 경우 질소가 제거된 후, 유기산으로 전환되어 에너지 대사에 이용되기도 한다. 질소는 요소회로(urea cycle)를 통해 제거 된다. 질소고정 박테리아는 질소화효소 복합체를 이용하여 대기중의 질소를 암모니아로 전환하며, 암모늄이온은 아미노산 합성에 사용된다. 아미노산의 탄소원...2025.05.07
-
생화학 14단원 효소의 조절 요약정리2025.04.301. Allosteric 효소 Allosteric enzyme이란 substrate가 결합하는 active site 외에 다른 물질이 binding할 수 있는 다른 곳이 있는데 거기에 다른 물질이 결합함으로서 enzyme의 activity를 조절하는 형태의 enzyme을 말한다. 다른 물질이 결합하는 곳을 allosteric site 또는 regulatory site라고 부른다. 다른 물질이 enzyme의 activity를 저해하는 경우 그 물질을 allosteric inhibitor라고 부른다. Allosteric enzyme은 ...2025.04.30
-
아동간호학 신생아 선천성 대사장애2025.11.171. 선천성 대사질환의 정의 및 특성 선천성대사질환은 생화학적 대사가 태어날 때부터 결함이 있는 질환으로, 대부분 한 개의 효소나 조효소의 유전적 기능장애로 인해 발생한다. 개별 질환은 드물지만 전체적으로는 흔하며 600여 종 이상이 존재하고 새로운 질환이 계속 발견되고 있다. 대부분 상염색체열성 유전방식을 따르며, 효소 이상으로 인해 대사되어야 할 물질이 체내에 축적되거나 필요한 물질이 생성되지 못해 신체 기능장애를 초래한다. 2. 선천성 대사질환의 원인 및 병태생리 선천성대사질환은 효소 이상으로 인해 유해한 물질이 축적되거나 생...2025.11.17
-
탄수화물의 기능 및 대사과정2025.11.161. 탄수화물의 기능 탄수화물은 단백질, 지방과 함께 3대 영양소 중 하나로서 체내에 흡수되어 주 활동 에너지로 활용된다. 주요 기능으로는 에너지 공급기능(1g당 약 4kcal 열량 제공), 단백질 절약기능(단백질이 고유 기능을 유지하도록 함), 장내 연동운동 촉진기능(셀룰로스 등이 장내 물질 이동 돕기), 신체 구성기능(손톱, 뼈, 연골, 피부, DNA, RNA의 구성성분)이 있다. 2. 탄수화물의 대사과정 체내에 흡수된 탄수화물은 여러 단계의 분해 과정을 거쳐 다당에서 포도당으로 변환된다. 포도당은 글루코오스, 프룩토오스, 갈락...2025.11.16
-
식이섬유소의 소화 불가능 이유와 기능 및 효과2025.05.031. 식이섬유소의 소화 불가능 이유 식이 섬유소는 포도당이 결합으로 연결된 중합체로, 인체에서 이를 분해할 수 있는 소화효소가 생성되지 않기 때문에 난소화성 다당류로 분류됩니다. 따라서 식이섬유소는 체내에서 소화되지 않습니다. 2. 식이섬유소의 기능 및 효과 식이섬유소는 수용성과 불용성으로 구분됩니다. 수용성 식이섬유소는 물과 친화력이 강해 갤을 형성하며, 영양 성분 흡수를 지연시키거나 방해하는 작용이 있어 공복감 지연, 혈당 상승 지연 효과가 있습니다. 또한 장내 미생물에 의해 발효되어 에너지원으로 사용되지만 가스 생성을 유발할 ...2025.05.03
